CMR #70Q
INSTITUTE OF USN- 1]¢€ 5\\\\ CMRIT
TECHNOLOGY et

Internal Assessment Test |1 — May 2021

Sub: Cloud Computing Code: | 18BMCA444
Max . .
Date: | 20-05-21 | Duration: | 90 mins Marks: | 50 Sem: v Branch: MCA
Note: Answer any full 5 questions. All questions carry equal marks. Total Marks: 50
OBE
PART-1 Marks O IRBT
1. Summarize on SOA with a neat diagram. 10 |CO1| L4
(OR)
2 Explain the levels of virtualization. 10 |CO1| L2
PART-II 6 |CO1] L1
3. a Differentiate between cloud and traditional computing.
b. Discuss the purpose of virtual storage management. 4 COl| L4
(OR)
4. Differentiate between Host-based virtualization and Para-virtualization. 10 |CO1| L4
PART-III 10 |CO1| L1
5. What is the process of live migration of a virtual machine?
(OR)
6 A Differentiate between public, private and hybrid cloud 5 |CO1 L4
B What are laaS, PaaS, SaaS? 5 |CO1| L1
PART-IV 10 |CO1] L1
7 Draw a diagram and explain the concept of vVCUDA architecture
(OR)
8 Write short note on Message Passing, Map Reduce, Network Threats and Data 10 CO1 L1
Integrity
PART-V
9 Describe XEN architecture. 10 |CO5| L4
(OR)

10 What are virtual clusters? How are they different from physical clusters? 10 [CO5| L4

1.

A service-oriented architecture (SOA) is a style of software design where services are provided to the other components by
application components, through a communication protocol over a network. The basic principles of service-oriented architecture are
independent of vendors, products and technologies.[1] A service is a discrete unit of functionality that can be accessed remotely and
acted upon and updated independently, such as retrieving a credit card statement online.

A service has four properties according to one of many definitions of SOA

1. It logically represents a business activity with a specified outcome.

2. ltis self-contained.

3. Itis a black box for its consumers.

4. It may consist of other underlying services.

Different services can be used in conjunction to provide the functionality of a large software application, a principle it shares with
modular programming. Service-oriented architecture integrates distributed, separately-maintained and deployed software components.
Itis enabled by technologies and standards that make it easier for components to communicate and cooperate over a network,
especially an IP network.

In SOA, services use protocols that describe how they pass and parse messages using description metadata. This metadata
describes both the functional characteristics of the service and quality-of-service characteristics. Service-oriented architecture aims to
allow users to combine large chunks of functionality to form applications which are built purely from existing services and combining
them in an ad hoc manner. A service presents a simple interface to the requester that abstracts away the underlying complexity acting
as a black box. Further users can also access these independent services without any knowledge of their internal implementation.
The related buzzword service-orientation promotes loose coupling between services. SOA separates functions into distinct units, or
services, which developers make accessible over a network in order to allow users to combine and reuse them in the production of
applications. These services and their corresponding consumers communicate with each other by passing data in a well-defined,
shared format, or by coordinating an activity between two or more services.[

A manifesto was published for service-oriented architecture in October, 2009. This came up with six core values which are listed as
follows

. Business value is given more importance than technical strategy.

. Strategic geals are given more importance than project-specific benefits.

- Intrinsic inter-operability is given more importance than custom integration.

. Shared services are given more importance than specific-purpose implementations.
. Flexibility is given more importance than optimization.

. Eveolutionary refinement is given more importance than pursuit of initial perfection.

[y T o) B =N P T U T

SOA can be seen as part of the continuum which ranges from the older concept of distributed computing and modular programming,
through SOA. and on to current practices of mashups, Saas, and cloud computingiwhich some see as the offspring of SOA).

2. Instruction Set Architecture Level
At the ISA level, virtualization is performed by emulating a given ISA by the ISA of the host machine. For example, MIPS binary
code can run on an x86-based host machine with the help of ISA emulation. With this approach, it is possible to run a large amount
of legacy binary code written for various processors on any given new hardware host machine. Instruction set emulation leads to
virtual ISAs created on any hardware machine. The basic emulation method is through code interpretation. An interpreter program
interprets the source instructions to target instructions one by one. One source instruction may require tens or hundreds of native
target instructions to perform its function. Obviously, this process is relatively slow. For better performance, dynamic binary
translation is desired. This approach translates basic blocks of dynamic source instructions to target instructions. The basic blocks

can also be extended to program traces or super blocks to increase translation efficiency. Instruction set emulation requires binary
translation and optimization. A virtual instruction set architecture (V-1SA) thus

requires adding a processor-specific software translation layer to the compiler.

Hardware Abstraction Level

Hardware-level virtualization is performed right on top of the bare hardware. On the one hand, this approach generates a virtual
hardware environment for a VM. On the other hand, the process manages the underlying hardware through virtualization. The idea
is to virtualize a computer’s resources, such as its processors, memory, and I/O devices. The intention is to upgrade the hardware
utilization rate by multiple users concurrently. The idea was implemented in the IBM VM/370 in the 1960s. More recently, the Xen
hypervisor has been applied to virtualize x86-based machines to run Linux or other

guest OS applications.

Operating System Level

This refers to an abstraction layer between traditional OS and user applications. OS-level virtualization creates isolated containers
on a single physical server and the OS instances to utilize the hardware and software in data centers. The containers behave like
real servers. OS-level virtualization is commonly used in creating virtual hosting environments to allocate hardware resources
among a large number of mutually distrusting users. It is also used, to a lesser extent, in consolidating server hardware by moving
services on separate hosts into containers or VMSs on one server.

Library Support Level

Most applications use APIs exported by user-level libraries rather than using lengthy system calls by the OS. Since most systems
provide well-documented APIs, such an interface becomes another candidate for virtualization. Virtualization with library
interfaces is possible by controlling the communication link between applications and the rest of a system through API hooks. The
software tool WINE has implemented this approach to support Windows applications on top of UNIX hosts.

Another example is the vCUDA which allows applications executing within VMs to leverage GPU

hardware acceleration.

User-Application Level

Virtualization at the application level virtualizes an application as a VM. On a traditional OS, an application often runs as a
process. Therefore, application-level virtualization is also known a sprocess-level virtualization. The most popular approach is to
deploy high level language (HLL) VMs. In this scenario, the virtualization layer sits as an application program on top of the
operating system, and the layer exports an abstraction of a VM that can run programs written and compiled to a particular abstract
machine definition. Any program written in the HLL and compiled for this VM will be able to run on it. The Microsoft .NET CLR
and Java Virtual Machine (JVM) are two good examples of this class of VM. Other forms of application-level virtualization are
known as application isolation, application sandboxing, or application streaming. The process involves wrapping the application in
a layer that is isolated from the host OS and other applications. The result is an application that is much easier to distribute and
remove from user workstations. An example is the LANDesk application virtualization platform which deploys software
applications as self-contained, executable files in an isolated

environment without requiring installation, system modifications, or elevated security privileges. process-level virtualization. The
most popular approach is to deploy high level language (HLL) VMs. In this scenario, the virtualization layer sits as an application
program on top of the operating system, and the layer exports an abstraction of a VM that can run programs written and compiled
to a particular abstract machine definition. Any program written in the HLL and compiled for this

VM will be able to run on it. The Microsoft .NET CLR and Java Virtual Machine (JVM) are two good examples of this class of
VM. Other forms of application-level virtualization are known as application isolation, application sandboxing, or application
streaming. The process involves wrapping the application in a layer that is isolated from the host OS and other applications. The
result is an application that is much easier to distribute and remove from user workstations. An example is the LANDesk
application virtualization platform which deploys software applications as self-contained, executable files in an isolated
environment without requiring installation, system modifications, or elevated security privileges.

Application level

JVM/ .NET CLR / Panot

. A
5
Library (user-level API) level
s Y
WINES WABIf LxRun / Visual MainWin f vCUDA
\. A
Operating system level
-
Jail / Virtual Environment / Ensim's VPS f FVM
S
“

Hardware abstraction layer (HAL) level

WMware [Virtual PC/ Denali f Xen / L4/
Plex 86 / User mode Linux / Cooperative Linux

Instruction set architecture (ISA) level

Bochs / Crusoe [/ QEMU 7 BIRD / Dynamo

AGURE 3.2

Virtualization ranging from hardware to applications in five abstraction levels.

Tradiional Computing Cloud Computing

+ Buy Assets * Buy Service
Lo * Build Technical Architecture + Architecture included
» Payfor Assets J * PayforUse
* Adrmiinislralive Overhead v Reduced Admin Funclivn

+ Single-tenant, non-shared * Mufti-tenant. Scalable. Elastic.
+ Static * Dynamic

g

« Internal Networks * Overthe Internet
ol * Corporate Deskiop * Any device
Tecniaal

Iage!

+ Costly, Lengthy deployments + Reduced deploymentstime
Ll + Land and expand staffing + Fast ROI

Mage!

3b.
The term “stomge virualization™ was widey used before the rmnaissance of system vinualzation. Yet
the term has a different meaning in a system virualization environment. Previously, siorage virtualiza-
tion was largely used to describe the ageregation and repatitioning of disks at very coame time scales
for use by physical machines, In system vinualization, vinual storage incledes the stomge managed by
VMMs and guest (5es. Genemlly, the data stored in this environment can be classified into two cate-
pgories: VM images and application data. The VM images are special to the virial envionment, while
apphcaton data includes all other data which 15 the same as the data in tmditional (35 envirmonments.
The most important aspects of system virtualization are encapsulaton and isolation. Tradibonal
operatng systems and apphications runming on them can be encapsulated in VM=, Only one operating
system runs in 4 virtuahzaton while many applicatons run in the operaing system. System virtuah-
zation allows multple VMs to run on a physical machine and the VM= are completely solated. To
achieve encapsulation and isolaton, both the system software and the hardwane platform, such as
CPUs and chipsets, are mpidly updated. However, storage is lagging. The storage systems become
the main bottleneck of VM deployment.
In virtualization enviromments, a virtualizaton layer is inserted between the hardware and tmdi-
tional operating systems or a traditional operating system is modified to support virtual ization. This
procedure complicates stompe operations, On the one hand, stomge management of the guest 05 per-
forms as though it is opemtng in a real hard disk while the guest OSes cannot access the hard disk
directly. On the other hand, many guest (%es contest the hand disk when many YMs are mnning on a
single physical machine. Therfore, storage mmmagement of the underlying VMM is much more com-
plex than that of guest OSes (tmditonal (85,
In addition, the stomge primitives used by WMs ane not nimble. Hence, operations such as remap-
ping volumes across hosts and checkpomting disks are frequently clumsy and esoteric, and sometimes
simply unavailable. In data centers, there ane often thousands of Whis, which cause the VM images to
become flooded. Many researchers tried to solve these problems in virtual storage management. The
miin purposes of their research are to make management casy while enhanang performance and redu-
cing the amount of stomge ocaupied by the VM images. Pamllax is a distributed stomge system custo-
mized for virtualization emvironments. Content Addressable Storage (CAS) 15 a soluton to reduce the
total size of WM images, and therefore supponts a large set of Vh-hased systems in data centers.
Since traditional stomge management echniques do not consider the feaures of siomge in virualzation
environments, Pamllax desipns a novel acchitecture in which stompe featumes that have tmditionally been
implemented directly on high-end storage armys and switchers ane relocated into a fedemtion of storage
VMs. These stomge VMs share the same physical hosts as the Whs that they serve. Figure 3,30 provides
an overview of the Parallax system architecture. it supports all popular system virtnabzation technigues,
such as paravirmalizaton and full virwalization, For cach physical machine, Pamllax customes a special
storage appliance VM. The stompge apphance VM acts as a block virtualizabon laver bebween individual
Whis and the plvsical stompe device. it provides a virtual disk for each VM on the same phvsical machine.
4. Host-Based Virtualization
An alternative VM architecture is to install a virtualization layer on top of the host OS. This host OS is still responsible for managing
the hardware. The guest OSes are installed and run on top of the virtualization layer. Dedicated applications may run on the VMs.
Certainly, some other applications can also run with the host OS directly. This hostbased architecture has some distinct advantages, as
enumerated next. First, the user can install thisVM architecture without modifying the host OS. The virtualizing software can rely on
the host OS to provide device drivers and other low-level services. This will simplify the VM design and ease
its deployment. Second, the host-based approach appeals to many host machine configurations. Compared to the hypervisor/VMM
architecture, the performance of the host-based architecture may also be low. When an application requests hardware access, it involves
four layers of mapping which downgrades performance significantly. When the ISA of a guest OS is different from the ISA of the
underlying hardware, binary translation must be adopted. Although the host-based architecture has flexibility, the performance is too
low to be useful in practice.

Direct
"\\ execution

) \, of user
Ring 2 \ requests

| |Binary

Ring 0 m | translation
Y/ of OS

Host computer ‘/ requests
system hardware

FIGURE 3.6

Indirect execution of complex instructions via binary
translation of guest OS requests using the VMM plus
direct execution of simple instructions on the same hast.

Para-Virtualization Architecture

When the x86 processor is virtualized, a virtualization layer is inserted between the hardware and the OS. According to the x86 ring
definition, the virtualization layer should also be installed at Ring 0. Different instructions at Ring 0 may cause some problems. In the
figure below, we show that para-virtualization replaces nonvirtualizable instructions with hypercalls that communicate directly with the
hypervisor or VMM. However, when the guest OS kernel is modified for virtualization, it can no longer run on the hardware directly.
Although para-virtualization reduces the overhead, it has incurred other problems. First, its compatibility and portability may be in
doubt, because it must support the unmodified OS as well. Second, the cost of maintaining para-virtualized OSes is high, because they
may require deep OS kernel modifications. Finally, the performance advantage of para-virtualization varies greatly due to workload
variations. Compared with full virtualization, para-virtualization is relatively easy and more practical. The main problem in full
virtualization is its low performance in binary translation. To speed up binary translation is difficult. Therefore, many virtualization
products employ the para-virtualization architecture. The popular Xen, KVM, and VMware ESX are good examples.

Ring 3 User apps

Direct

\\ execution

User apps
Ring 2 |\ ofuser
- '\ reguests

Ring 3

(" Application](Application]

Ring 1 | |
Para-virtualized Para-virtualized = | ‘Hypercalls' to the
guest c;i):ratlng l guest ;Bp}aratlng Ring 0 ;’:;S tO - |virtualization
system system } | layer replace

- /| nonvirtualizable
Hypervisor/ VMM Virtualization layer =, / 08 instructions

L Hardware) Host t ‘/
system hardware

AGURE 3.7

Para-virtualized VM architecture, which invalves FIGURE 3.8

modifying the guest OS kernel to replace The use of a para-virtualized guest OS assisted by
nonvirtualizable instructions with hypercalls for the an intelligent compiler to replace nonvirtualizable 03
hypervisor or the YMM to carry out the virtualization instructions by hypercalls.

process (See Figure 3.8 for more details.) (Courtesy of VMWare [71])

VM running normally on Stage 0: Pre-Migration
Host A Acfive VM on Host A
Alternate physical host may be preselected for migration
Block devices mirrored and free resources maintained

Stage 1: Reservation
Initizlize a container on the target host

e] [
+

Owverhead due to copying Stage 2: Herative pre-copy
Enable shadow paging
Copy dirty pages in succassive rounds. -,

! SR ———

e &

- h 4
Downtime Stage 3: Stop and copy

(VM out of serwice) Suspend WM on host A

Generste ARP to redirect fraffic to Host B

Synchronize all remaining VM state to Host B

Stage 4: Commitment
VM staie on Host A is released

S I =
¥

VM running normally on Stage 5: Activation
Host B VM starts on Host B
Connects to local devices
Resumes normal operation

FIGURE 3.20
Liwve migration process of a YM from one host to another.

6a.

———— e

Platform frontend : :
< (web service API) e oS :

e R e

To users or other public

clouds over the Internet
Mlcrosoﬂ
Azure
[} = S
| A hybrid
cloud alesforce

Force. com

An
Intranet

What is a public cloud?

A public cloud is built over the Internet and can be accessed by any user who has paid for the service. Public clouds are owned by
service providers and are accessible through a subscription. The callout box in top of Figure shows the architecture of a typical public
cloud. Many public clouds are available, including Google App Engine (GAE), Amazon Web Services (AWS), Microsoft Azure, IBM
Blue Cloud, and Salesforce.com’s Force.com. The providers of the aforementioned clouds are commercial providers that offer a
publicly accessible remote interface for creating and managing VM instances within their proprietary infrastructure. A public cloud
delivers a selected set of business processes. The application and infrastructure services are offered on a flexible price-per-use basis.

Advantages of public clouds:

Lower costs—no need to purchase hardware or software and you pay only for the service you use.
No maintenance—your service provider provides the maintenance.

Near-unlimited scalability—on-demand resources are available to meet your business needs.

High reliability—a vast network of servers ensures against failure.

What is a private cloud?

A private cloud is built within the domain of an intranet owned by a single organization. Therefore, it is client owned and managed, and
its access is limited to the owning clients and their partners. Its deployment was not meant to sell capacity over the Internet through
publicly accessible interfaces. Private clouds give local users a flexible and agile private infrastructure to run service workloads within
their administrative domains. A private cloud is supposed to deliver more efficient and convenient cloud services. It may impact the
cloud standardization, while retaining greater customization and organizational control.

Advantages of private clouds:

More flexibility—your organisation can customise its cloud environment to meet specific business needs.
Improved security—resources are not shared with others, so higher levels of control and security are possible.
High scalability—private clouds still afford the scalability and efficiency of a public cloud.

What is a hybrid cloud?

A hybrid cloud is built with both public and private clouds, as shown at the lower-left corner of Figure. Private clouds can also support
a hybrid cloud model by supplementing local infrastructure with computing capacity from an external public cloud. For example, the
Research Compute Cloud (RC2) is a private cloud, built by IBM, that interconnects the computing and IT resources at eight IBM
Research Centers scattered throughout the United States, Europe, and Asia. A hybrid cloud provides access to clients, the partner
network, and third parties.

Advantages of hybrid clouds:

Control—your organisation can maintain a private infrastructure for sensitive assets.
Flexibility—you can take advantage of additional resources in the public cloud when you need them.
Cost-effectiveness—with the ability to scale to the public cloud, you pay for extra computing power only when needed.

Ease—transitioning to the cloud does not have to be overwhelming because you can migrate gradually—phasing in workloads over
time.

6b. laaS: Infrastructure as a Service

Cloud infrastructure services, known as Infrastructure as a Service (laaS), are made of highly scalable and automated compute
resources. laaS is fully self-service for accessing and monitoring things like compute, networking, storage, and other services, and it
allows businesses to purchase resources on-demand and as-needed instead of having to buy hardware outright. Some characteristics to
look for when considering laaS are:

e Resources are available as a service
The cost varies depending on consumption
Services are highly scalable
Typically includes multiple users on a single piece of hardware
Provides complete control of the infrastructure to organizations
Dynamic and flexible

PaaS: Platform as a Service

Cloud platform services, or Platform as a Service (PaaS), provide cloud components to certain software while being used mainly for
applications. PaaS provides a framework for developers that they can build upon and use to create customized applications. All servers,
storage, and networking can be managed by the enterprise or a third-party provider while the developers can maintain management of
the applications.

Paa$S has many characteristics that define it as a cloud service, including:

e Itis built on virtualization technology, meaning resources can easily be scaled up or down as your business changes
e Provides a variety of services to assist with the development, testing, and deployment of apps

e Numerous users can access the same development application

e Web services and databases are integrated

SaaS: Software as a Service

Software as a Service, also known as cloud application services, represent the most commonly utilized option for businesses in the
cloud market. SaaS utilizes the internet to deliver applications to its users, which are managed by a third-party vendor. A majority of
SaaS applications are run directly through the web browser, and do not require any downloads or installations on the client side.

There are a few ways to help you determine when SaaS is being utilized:

Managed from a central location

Hosted on a remote server

Accessible over the internet

Users not responsible for hardware or software updates

Billing
service

Master

Status DB

FIGURE 4.5
The laa$S, PaaS, and SaaS cloud service models at different service levels..

7. vCUDA Architecture

Host OS , , Guest OS

vCUDA stub CUDA application
ry | | p

VCUDA library

CUDA library

Device driver

VMM

Device (GPU, Hard disk, Network card)

FAGURE 3.4
Basic concept of the vCUDA architecture.

CUDA is a programming model and library for general-purpose GPUs. It leverages the high performance of GPUs to run compute-
intensive applications on host operating systems. However, it is difficult to run CUDA applications on hardware-level VMs directly.
VCUDA virtualizes the CUDA library and can be installed on guest OSes. When CUDA applications run on a guest OS and issue a call
to the CUDA API, vCUDA intercepts the call and redirects it to the CUDA API running on the host OS. The vCUDA employs a client-
server model to implement CUDA virtualization. It consists of three user space components: the vVCUDA library, a virtual GPU in the
guest OS (which acts as a client), and the vCUDA stub in the host OS (which acts as a server). The vVCUDA library resides in the guest
OS as a substitute for the standard CUDA library. It is responsible for intercepting and redirecting API calls from the client to the stub.
Besides these tasks, VCUDA also creates vGPUs and manages them. The functionality of a vGPU is threefold: It abstracts the GPU
structure and gives applications a uniform view of the underlying hardware; when a CUDA application in the guest OS allocates a
device’s memory the vGPU can return a local virtual address to the application and notify the remote stub to allocate the real device
memory, and the vGPU is responsible for storing the CUDA API flow. The vCUDA stub receives and interprets remote requests and
creates a corresponding execution context for the API calls from the guest OS, then returns the results to the guest OS. The vCUDA
stub also manages actual physical resource allocation.

8. Message Passing: Message passing is a form of communication between objects, processes or
other resources used in object-oriented programming, inter-process communication and parallel
computing. Message passing can be synchronous or asynchronous. Synchronous message passing
systems require the sender and receiver to wait for each other while transferring the message. In
asynchronous communication the sender and receiver do not wait for each other and can carry on
their own computations while transfer of messages is being done. The concept of message passing
makes it easier to build systems that model or simulate real-world problems.

Map Reduce: MapReduce is a programming model suitable for processing of huge data. Hadoop is capable of
running MapReduce programs written in various languages: Java, Ruby, Python, and C++. MapReduce programs
are parallel in nature, thus are very useful for performing large-scale data analysis using multiple machines in the
cluster. MapReduce programs work in two phases: Map phase & Reduce phase. An input to each phase is key-
value pairs. In addition, every programmer needs to specify two functions: map function and reduce function.

Shuffling Reducer

bad , 1 bad, 1

Input Splits Mapping
Class, 1 = Class,1 Einal
S

Waelcome to Hadoop
Class Hadoop is Hadoop . 1
good Hadoop is bad Hadoop , 1 |+ Hadoop , 3

Welcome ,1 = Welcome ,1

(@guru99.com

Network Threats:
Data Integrity:

9.
Control, VO (Domain O) (Guest domain Guest domain
p-J p-J p-J p-d p-J p-J > p-J p-] >
= j=1 = = = =1 = j=1 =1 =
o o o o o o o o o o
o 1] =3 = o o = o]
= = = = = = - = 5 =
=] = = = | = =] = = =] =
Domaind XenoLinux XenoWindows

XEN (Hypervisor)

Hardware devices

FAGURE 3.5

The Xen architecture's special domain O for control and 110, and several guest domains for user applications.
(Courtesy of P. Barham, et al. [7])

10. Virtual clusters are built with VMs installed at distributed servers from one or more physical clusters. The VMs in a virtual cluster
are interconnected logically by a virtual network across several physical networks. Each virtual cluster is formed with physical
machines or a VM hosted by multiple physical clusters. The virtual cluster boundaries are shown as distinct boundaries.

The provisioning of VMs to a virtual cluster is done dynamically to have the following interesting properties:

* The virtual cluster nodes can be either physical or virtual machines. Multiple VMs running with different OSes can be deployed on the
same physical node.

* A VM runs with a guest OS, which is often different from the host OS, that manages the resources in the physical machine, where the
VM is implemented.

* The purpose of using VMs is to consolidate multiple functionalities on the same server. This will greatly enhance server utilization
and application flexibility.

* VMs can be colonized (replicated) in multiple servers for the purpose of promoting distributed parallelism, fault tolerance, and
disaster recovery.

* The size (number of nodes) of a virtual cluster can grow or shrink dynamically, similar to the way an overlay network varies in size in
a peer-to-peer (P2P) network.

* The failure of any physical nodes may disable some VMs installed on the failing nodes. But the failure of VMs will not pull down the
host system.

Since system virtualization has been widely used, it is necessary to effectively manage VMs running on a mass of physical computing
nodes (also called virtual clusters) and consequently build a high-performance virtualized computing environment. This involves virtual
cluster deployment, monitoring and management over large-scale clusters, as well as resource scheduling, load balancing, server
consolidation, fault tolerance, and other techniques. The different node colors in the Figure refer to different virtual clusters. In a virtual
cluster system, it is quite important to store the large number of VM images efficiently. The different colors in the figure represent the
nodes in different virtual clusters. As a large number of VM images might be present, the most important thing is to determine how to
store those images in the system efficiently. There are common installations for most users or applications, such as operating systems or
user-level programming libraries. These software packages can be preinstalled as templates (called template VMs). With these
templates, users can build their own software stacks. New OS instances can be copied from the template VM. User-specific components
such as programming libraries and applications can be installed to those instances. Three physical clusters are shown on the left side of
the Figure. Four virtual clusters are created on the right, over the physical clusters. The physical machines are also called host systems.
In contrast, the VMs are guest systems. The host and guest systems may run with different operating systems. Each VM can be installed
on a remote server or replicated on multiple servers belonging to the same or different physical clusters. The boundary of a virtual
cluster can change as VM nodes are added, removed, or migrated dynamically over time.

Virtual
machines

FIGURE 3.18
A cloud platform with four virtual clusters over three physical clusters shaded differently.

- Virtual cluster Virtual cluster Virtual cluster Virtual cluster
I_— nodes for nodes for nodes for nodes for .
~ application A application B application C application D
FIGURE 3.19

The concept of a virtual cluster based on application partitioning.

