
1 | P a g e

CMR

INSTITUTE OF

TECHNOLOGY

Internal Assessment Test 3 – Answer key

Sub: Advanced Java Programming Sub Code:
18MC

A41

Date: 19/06/2021 Duration: 90 min’s
Max

Marks:
50 Sem 4 Branch: MCA

1a(Explain the container services provided by component mode of EJB

Dependency Injection

2. Concurrency

3. Instance Polling and Caching

4. Transactions

5. Security

6. Timers

7. Naming and Object Stores, JNDI

8. Lifecycle callbacks

9. Interoperability

10. Interceptors

1. Instance Pooling/Caching

Because of the strict concurrency rules enforced by the Container, an intentional bottleneck is

often introduced where a service instance may not be available for processing until some other

request has completed.

If the service was restricted to a singular instance, all subsequent requests would have to queue up

until their turn was reached

2 | P a g e

EJB addresses this problem through a technique called instance pooling, in which each odule is

allocated some number of instances with which to serve incoming requests Many vendors provide

configuration options to allocate pool sizes appropriate to the work being performed, providing the

compromise needed to achieve optimal throughput.

2. Transactions

Transactions provide a means for the developer to easily delegate the creation and control of

transactions to the container.

 When a bean calls createTimer(), the operation is performed in the scope of the current

transaction. If the transaction rolls back, the timer is undone and it’s not created

 The timeout callback method on beans should have a transaction attribute of RequiresNew.

 This ensures that the work performed by the callback method is in the scope of container-initiated

transactions.

3. Security

Most enterprise applications are designed to serve a large number of clients, and users are not

necessarily equal in terms of their access rights.

An administrator might require hooks into the configuration of the system, whereas unknown guests

may be allowed a read-only view of data.

If we group users into categories with defined roles, we can then allow or restrict access to the role

itself, as illustrated in Figure 15-1.

Figure 15-1. EJB security permitting access based upon the caller’s role

This allows the application developer to explicitly allow or deny access at a fine-grained level based

upon the caller’s identity

3 | P a g e

4.Timers

We dealt exclusively with client-initiated requests. While this may handle the bulk of an

application’s requirements, it doesn’t account for scheduled jobs:

• A ticket purchasing system must release unclaimed tickets after some timeout of inactivity.

• An auction house must end auctions on time.

• A cellular provider should close and mail statements each month.

The EJB Timer Service may be leveraged to trigger

these events and has been enhanced in the 3.1

specification with a natural-language expression

syntax.

2. What is session bean? Explain the types of session beans.

Session Beans If EJB is a grammar, session beans are the verbs. Session beans contain

business methods.

Types of Session Bean

There are 3 types of session bean.

1) Stateless Session Bean: It doesn't maintain state of a client between multiple method calls.

4 | P a g e

2) Stateful Session Bean: It maintains state of a client across multiple requests.

3) Singleton Session Bean: One instance per application, it is shared between clients and

supports concurrent access.

Stateless session beans (SLSBs) Stateless session beans are useful for functions in which state

does not need to be carried from invocation to invocation. The Container will often create and

destroy instances. This allows the Container to hold a much smaller number of objects in

service, hence keeping• memory footprint down.

Stateful session beans (SFSBs) Stateful session beans differ from SLSBs in that every request

upon a given proxy reference is guaranteed to ultimately invoke upon the same bean instance.

SFSB invocations share conversational state. Each SFSB proxy object has an isolated session

context, so calls to one session will not affect another. Stateful sessions, and their

corresponding bean instances, are created sometime before the first invocation upon a proxy is

made to its target instance (Figure 2-3). They live until the client invokes a method that the

bean provider has marked as a remove event, or until the Container decides to remove the

session.

Singleton beans Sometimes we don’t need any more than one backing instance for our

business objects. All requests upon a singleton are destined for the same bean instance, The

Container doesn’t have much work to do in choosing the target (Figure 2-4). The singleton

session bean may be marked to eagerly load when an application is deployed; therefore, it may

5 | P a g e

be leveraged to fire application lifecycle events. This draws a relationship where deploying a

singleton bean implicitly leads to the invocation of its lifecycle callbacks. We’ll put this to

good use when we discuss singleton beans.

3. Explain about the Statelful session bean with its life cycle

• It has only two states: Does Not Exist and Method-Ready Pool.

 The Method-Ready Pool is an instance pool of stateless session bean

6 | P a g e

The Does Not Exist State

When a bean is in the Does Not Exist state, it is not an instance in the memory of the system.

In other words, it has not been instantiated yet.

The Method-Ready Pool

• Stateless bean instances enter the Method-Ready Pool as the container needs them.

• When the EJB server is first started, it may create a number of stateless bean

instances and enter them into the Method-Ready Pool.

• When the number of stateless instances servicing client requests is insufficient, more can

be created and added to the pool.

Transitioning to the Method-Ready Pool

When an instance transitions from the Does Not Exist state to the Method-Ready Pool, three

operations are performed on it.

1. First, the bean instance is instantiated by invoking the Class.newInstance() method on the

stateless bean class.

2. Second, the container injects any resources that the bean’s metadata has requested via an

injection annotation or XML deployment descriptor.

3. Finally, the EJB container will fire a post-construction event.

The bean class can register for this event by annotating a method with

@javax.annotation.PostConstruct.

The @PreDestroy method should close any open resources before the stateless session bean is

evicted from memory at the end of its lifecycle.

Life in the Method-Ready Pool

• Once an instance is in the Method-Ready Pool, it is ready to service client requests.

• When a client invokes a business method on an EJB object, the method call is delegated to

any available instance in the Method-Ready Pool.

• While the instance is executing the request, it is unavailable for use by other EJB objects.

• Once the instance has finished, it is immediately available to any EJB object that needs it.

7 | P a g e

• Stateless session instances are dedicated to an EJB object only for the duration of a

single method call.

• When an instance is swapped in, its SessionContext changes to reflect the context of

the EJB object and the client invoking the method.

• Once the instance has finished servicing the client, it is disassociated from the EJB object

and returned to the Method-Ready Pool.

• Clients that need a remote or local reference to a stateless session bean begin by

having the reference injected or by looking up the stateless bean in JNDI.

• The reference returned does not cause a session bean instance to be created or pulled

from the pool until a method is invoked on it.

• PostConstruct is invoked only once in the lifecycle of an instance: when it is transi-

tioning from the Does Not Exist state to the Method-Ready Pool.

Transitioning out of the Method-Ready Pool: The death of a stateless bean instance

• Bean instances leave the Method-Ready Pool for the Does Not Exist state when the

server no longer needs them—that is, when the server decides to reduce the total size of the

Method-Ready Pool by evicting one or more instances from memory.

• The process begins when a PreDestroy event on the bean is triggered. The bean class

can register for this event by annotating a method with @javax.annotation.PreDestroy.

• The container calls this annotated method when the PreDestroy event is fired. This

callback method can be of any name, but it must return void, have no parameters, and

throw no checked exceptions.

4. What is message driven bean? Discuss the life cycle of the MDB with neat diagram

A message driven bean (MDB) is a bean that contains business logic. But, it is

invoked by passing the message. So, it is like JMS Receiver.

MDB asynchronously receives the message and processes it. A message driven

bean receives message from queue or topic, so you must have the knowledge of

JMS API.

8 | P a g e

• It has only two states: Does Not Exist and Method-Ready Pool.

 The Method-Ready Pool is an instance pool of stateless session bean

The Does Not Exist State

When a bean is in the Does Not Exist state, it is not an instance in the memory of the system.

In other words, it has not been instantiated yet.

The Method-Ready Pool

• Stateless bean instances enter the Method-Ready Pool as the container needs them.

• When the EJB server is first started, it may create a number of stateless bean

instances and enter them into the Method-Ready Pool.

• When the number of stateless instances servicing client requests is insufficient, more can

be created and added to the pool.

Transitioning to the Method-Ready Pool

When an instance transitions from the Does Not Exist state to the Method-Ready Pool, three

operations are performed on it.

5. First, the bean instance is instantiated by invoking the Class.newInstance() method on the

stateless bean class.

6. Second, the container injects any resources that the bean’s metadata has requested via an

injection annotation or XML deployment descriptor.

7. Finally, the EJB container will fire a post-construction event.

The bean class can register for this event by annotating a method with

@javax.annotation.PostConstruct.

The @PreDestroy method should close any open resources before the stateless session bean is

evicted from memory at the end of its lifecycle.

Life in the Method-Ready Pool

• Once an instance is in the Method-Ready Pool, it is ready to service client requests.

• When a client invokes a business method on an EJB object, the method call is delegated to

any available instance in the Method-Ready Pool.

• While the instance is executing the request, it is unavailable for use by other EJB objects.

9 | P a g e

• Once the instance has finished, it is immediately available to any EJB object that needs it.

5. Summarise the Entity Relationship

• There are four types of cardinality:

– one-to-one,

– one-to-many,

– many-to-one,

– many-to-many.

• Each relationship can be either

– Unidirectional

– bidirectional.

1. One-to-one unidirectional

• The relationship between an employee and an address.

2. One-to-one bidirectional

• The relationship between an employee and a computer(computer ID for servicing)

• Given an employee, we’ll need to be able to look up the computer ID for tracing

purposes.

3. One-to-many unidirectional

• The relationship between an employee and a phone number.

• An employee can have many phone numbers (business, home, cell, etc.).

4. One-to-many bidirectional

• The relationship between an employee (manager) and direct reports.

• Given a manager, we’d like to know who’s working under him or her.

• able to find the manager for a given employee

5. Many-to-one unidirectional

• The relationship between a customer and his or her primary employee contact.

6. Many-to-many unidirectional

• The relationship between employees and tasks to be completed.

• Each task may be assigned to a number of employees, and employees may be

responsible for many tasks.

• Given a task we need to find its related employees, but not the other way around.

7. Many-to-many bidirectional

• The relationship between an employee and the teams to which he or she belongs.

• Teams may also have many employees, and we’d like to do lookups in both directions.

6.Explain the steps in JDBC process. Give an example

10 | P a g e

The following 5 steps are the basic steps involve in connecting a Java application with Database

using JDBC.

Register the Driver

Create a Connection

Create SQL Statement

Execute SQL Statement

Closing the connection

Register the Driver

Class.forName() is used to load the driver class explicitly.

Example to register with JDBC-ODBC Driver

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

Create a Connection

getConnection() method of DriverManager class is used to create a connection.

Syntax

getConnection(String url)

getConnection(String url, String username, String password)

getConnection(String url, Properties info)

Example establish connection with Oracle Driver

Connection con = DriverManager.getConnection

 ("jdbc:oracle:thin:@localhost:1521:XE","username","password");

Create SQL Statement

createStatement() method is invoked on current Connection object to create a SQL

Statement.

Syntax

public Statement createStatement() throws SQLException

Example to create a SQL statement

Statement s=con.createStatement();

Execute SQL Statement

executeQuery() method of Statement interface is used to execute SQL statements.

Syntax

public ResultSet executeQuery(String query) throws SQLException

Example to execute a SQL statement

ResultSet rs=s.executeQuery("select * from user");

 while(rs.next())

 {

 System.out.println(rs.getString(1)+" "+rs.getString(2));

 }

Closing the connection

After executing SQL statement you need to close the connection and release the session.

The close() method of Connection interface is used to close the connection.

Syntax

public void close() throws SQLException

11 | P a g e

Example of closing a connection

con.close();

import java.sql.*;

class OracleCon{

public static void main(String args[]){

try{

//step1 load the driver class

Class.forName("oracle.jdbc.driver.OracleDriver");

 //step2 create the connection object

Connection con=DriverManager.getConnection(

"jdbc:oracle:thin:@localhost:1521:xe","system","oracle");

//step3 create the statement object

Statement stmt=con.createStatement();

//step4 execute query

ResultSet rs=stmt.executeQuery("select * from emp");

while(rs.next())

System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));

//step5 close the connection object

con.close();

 }catch(Exception e){ System.out.println(e);}

}

}

7. Discuss the classes of EJB and depict tfhe various components of interaction with a neat diagram.

Session Beans If EJB is a grammar, session beans are the verbs. Session beans contain

business methods.

12 | P a g e

Types of Session Bean

There are 3 types of session bean.

1) Stateless Session Bean: It doesn't maintain

state of a client between multiple method calls.

2) Stateful Session Bean: It maintains state of a

client across multiple requests.

3) Singleton Session Bean: One instance per application, it is shared between clients and

supports concurrent access.

Stateless session beans (SLSBs) Stateless session beans are useful for functions in which state

does not need to be carried from invocation to invocation. The Container will often create and

destroy instances. This allows the Container to hold a much smaller number of objects in

service, hence keeping• memory footprint down.

Stateful session beans (SFSBs) Stateful session beans differ from SLSBs in that every request

upon a given proxy reference is guaranteed to ultimately invoke upon the same bean instance.

SFSB invocations share conversational state. Each SFSB proxy object has an isolated session

context, so calls to one session will not affect another. Stateful sessions, and their

corresponding bean instances, are created sometime before the first invocation upon a proxy is

made to its target instance (Figure 2-3). They live until the client invokes a method that the

bean provider has marked as a remove event, or until the Container decides to remove the

session.

13 | P a g e

Singleton beans Sometimes we don’t need any more than one backing instance for our

business objects. All requests upon a singleton are destined for the same bean instance, The

Container doesn’t have much work to do in choosing the target (Figure 2-4). The singleton

session bean may be marked to eagerly load when an application is deployed; therefore, it may

be leveraged to fire application lifecycle events. This draws a relationship where deploying a

singleton bean implicitly leads to the invocation of its lifecycle callbacks. We’ll put this to

good use when we discuss singleton beans.

MDB

Asynchronous messaging is a paradigm in which two or more applications communicate via a

message describing a business event. EJB 3.1 interacts with messaging systems via the Java

Connector Architecture (JCA) 1.6 (http://jcp.org/en/jsr/detail?id=322), which acts as an

abstraction layer that enables any system to be adapted as a valid sender. The message-driven

bean, in turn, is a listener that consumes messages and may either handle them directly or

delegate further processing to other EJB components. The asynchronous characteristic of this

exchange means that a message sender is not waiting for a response, so no return to the caller is

provided

14 | P a g e

Entity Beans While session beans are our verbs, entity beans are the nouns. Their aim is to

express an object view of resources stored within a Relational Database Management System

(RDBMS)—a process commonly known as object-relational mapping. Like session beans, the

entity type is modeled as a POJO, and becomes a managed object only when associated with a

construct called the javax.persistence.EntityManager, a container-supplied service that tracks

state changes and synchronizes with the database as necessary. A client who alters the state of

an entity bean may expect any altered fields to be propagated to persistent storage. Frequently

the EntityManager will cache both reads and writes to transparently streamline performance,

and may enlist with the current transaction to flush state to persistent storage automatically

upon invocation completion.

Unlike session beans and MDBs, entity beans are not themselves a server-side component type.

Instead, they are a view that may be detached from management and used just like any stateful

object. When detached (disassociated from the EntityManager), there is no database association,

but the object may later be re-enlisted with the EntityManager such that its state may again be

synchronized. Just as session beans are EJBs only within the context of the Container, entity

beans are managed only when registered with the EntityManager. In all other cases entity beans

act as POJOs, making them extremely versatile.

8) a

Write the short note about the following

(i) Persistence Context

(ii) XML Deployment Descriptor

15

(i) Persistence Context

• A persistence context is a set of managed entity object instances.
• Persistence contexts are managed by an entity manager.
• The entity manager tracks all entity objects within a persistence context for changes and

updates made, and flushes these changes to the database using the flush mode rules
• Once a persistence context is closed, all managed entity object instances

become detached and are no longer managed.
• Once an object is detached from a persistence context, it can no longer be managed by an

entity manager, and any state changes to this object instance will not be synchronized

with the database.
• When a persistence context is closed, all managed entity objects become detached and are

unmanaged.
• There are two types of persistence contexts:

• transaction-scoped persistence context
• extended persistence context.

Transaction Scoped Persistence context

• Everything executed
• Either fully succeed or fully fail

(ii) XML Deployment Descriptor

A deployment descriptor describes how EJBs are managed at runtime and enables the

customization of EJB behavior without modification to the EJB code.

A deployment descriptor is written in a file using XML syntax.

Add file is packed in the Java Archive (JAR) file along with the other files that are

required to deploy the EJB. It includes classes and component interfaces that are necessary for

each EJB in the package.

An EJB container references the deployment descriptor file to understand how to deploy

and manage EJBs contained in package.

 The deployment descriptor identifies the types of EJBs that are contained in the package

as well as other attributes, such as how transactions are managed.

8. Write an EJB program that demonstrates session bean with proper business logic. 10

Source Code :

Calculator.java

package package1;

import javax.ejb.Stateless;

16

@Stateless

public class Calculator implements CalculatorLocal

{

 @Override

 public Integer Addition(int a, int b) {

 return a+b;

 }

 @Override

 public Integer Subtract(int a, int b) {

 return a-b;

 }

 @Override

 public Integer Multiply(int a, int b) {

 return a*b;

 }

 @Override

 public Integer Division(int a, int b) {

 return a/b;

 }

}

CalculatorLocal.java

package package1;

import javax.ejb.Local;

public interface CalculatorLocal {

 Integer Addition(int a, int b);

 Integer Subtract(int a, int b);

 Integer Multiply(int a, int b);

 Integer Division(int a, int b);

}

Servlet1.java

import java.io.IOException;

import java.io.PrintWriter;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import package1.CalculatorLocal;

public class Servlet1 extends HttpServlet {

 @EJB

 private CalculatorLocal calculator;

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

17

 throws ServletException, IOException

 {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter())

 {

 out.println("Output : "+ "
");

 int a;

 a = Integer.parseInt(request.getParameter("num1"));

 int b;

 b=Integer.parseInt(request.getParameter("num2"));

 out.println("Number1 : " + a + "
");

 out.println("Number2 : " + b+ "
");

 out.println("Addition : " + calculator.Addition(a, b)+ "
");

 out.println("Subtraction :" + calculator.Subtract(a, b)+ "
");

 out.println("Multiplication :"+calculator.Multiply(a, b)+ "
");

 out.println("Division :"+calculator.Division(a, b)+ "
");

 }

 }

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException

 {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException

 {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo()

 {

 return "Short description";

 }

}

index.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Calculator</title>

18

 </head>

 <body>

 <form method="get" action="Servlet1">

 Enter Number1 : <input type="text" name="num1"/>

 Enter Number2 : <input type="text" name="num2"/>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

10 What is entity bean Explain the JAVA persistence model in detail

package Persist;

import java.io.Serializable;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

@Entity

public class Student implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String usnno;

 private String name;

 private int mark;

 public Long getId() {

 return id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 @Override

 public int hashCode() {

 int hash = 0;

 hash += (id != null ? id.hashCode() : 0);

 return hash;

 }

 @Override

19

 public boolean equals(Object object) {

 // TODO: Warning - this method won't work in the case the id fields are not set

 if (!(object instanceof Student)) {

 return false;

 }

 Student other = (Student) object;

 if ((this.id == null && other.id != null) || (this.id != null && !this.id.equals(other.id))) {

 return false;

 }

 return true;

 }

 @Override

 public String toString() {

 return "Persist.Student[id=" + id + "]";

 }

 public String getUsnno() {

 return usnno;

 }

 public void setUsnno(String usnno) {

 this.usnno = usnno;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public int getMark() {

 return mark;

 }

 public void setMark(int mark) {

 this.mark = mark;

 }

}

StudServlet.java

package WebClient;

import Persist.Student;

import Persist.StudentFacadeLocal;

import java.io.IOException;

import java.io.PrintWriter;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

20

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class StudServlet extends HttpServlet

{

 @EJB

 private StudentFacadeLocal studentFacade;

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 Student obj=new Student();

 obj.setUsnno(request.getParameter("usnno"));

 obj.setName(request.getParameter("name"));

 obj.setMark(Integer.parseInt(request.getParameter("mark")));

 studentFacade.create(obj);

 try (PrintWriter out = response.getWriter()) {

 /* TODO output your page here. You may use following sample code. */

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Student Data</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Congrats : Student " + request.getParameter("name") + " Record is

created successfully </h1>");

 out.println("</body>");

 out.println("</html>");

 }

 }

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }// </editor-fold>

}

Index.html

<html>

 <head>

21

 <title>TODO supply a title</title>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 </head>

 <body>

 <form method="get" action="StudServlet">

 Enter USN No. :<input type ="text" name ="usnno"/>

 Enter Name :<input type ="text" name ="name"/>

 Enter Mark :<input type ="text" name ="mark"/>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

