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What do you mean by Domain State Model? Explain the steps performed in
constructing the domain state model.

12.3 Domain State Model

Some domain objects pass through qualitatively distinct states during their lifetime. There
may be different constraints on attribute values, different associations or multiplicities in the
various states, different operations that may be invoked, different behavior of the operations,
and so on. It is often useful to construct a state diagram of such a domain class. The state
diagram describes the various states the object can assume, the properties and constraints of
the object in various states, and the events that take an object from one state to another.

Most domain classes do not require state diagrams and can be adequately described by
a list of operations. For the minority of classes that do exhibit distinct states, however, a state
model can help in understanding their behavior.

First identify the domain classes with significant states and note the states of each class.
Then determine the events that take an object from one state to another. Given the states and
the events, you can build state diagrams for the affected objects. Finally, evaluate the state
diagrams to make sure they are complete and correct.

The following steps are performed in constructing a domain state model.
Identify domain classes with states. [12.3.1)

Find states. [12.3.2]

Find events. [12.3.3)

Build state diagrams. [12.3.4]

Evaluate state diagrams. [12.3.5]

12.3.1 Identifying Classes with States

Examine the list of domain classes for those that have a distinct life cycle. Look for classes
that can be characterized by a progressive history or that exhibit cyclic behavior. Identify the
significant states in the life cycle of an object. For example, a scientific paper for a journal
goes from Being written to Under consideration to Accepted or Rejected. There can be some
cycles, for example, if the reviewers ask for revisions, but basically the life of this object is
progressive. On the other hand, an airplane owned by an airline cycles through the states of
Maintenance, Loading, Flying, and Unloading. Not every state occurs in every cycle, and
there are probably other states, but the life of this object is cyclic. There are also classes
whose life cycle is chaotic, but most classes with states are either progressive or cyclic.

ATM example. Account is an imp: busi pt, and the appropriate behavior
for an ATM depends on the state of an Account. The life cycle for Account is a mix of pro-
gressive and cycling to and from problem states. No other ATM classes have a significant
domain state model.

12.3.2 Finding States

List the states for each class. Characterize the objects in each class—the attribute values that
an object may have, the associations that it may participate in and their multiplicities, at-
tributes and ions that are ingful only in certain states, and so on. Give cach state
a meaningful name. Avoid names that indicate how the state came about: try to directly de-
scribe the state.

Don’'t focus on fine distinctions among states, particularly quantitative differences, such
as small, medium, or large. States should be based on qualitative differences in behavior, at-
tributes, or associations.

It is unnecessary to determine all the states before examining events. By looking at
events and considering transitions among states, missing states will become clear.

ATM example. Here are some states for an Account: Normal (ready for normal access),
Closed (closed by the customer but still on file in the bank records), Overdrawn (customer
withdrawals exceed the balance in the account), and Suspended (access to the account is
blocked for some reason).
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(OR)

\What do you mean by system conception? What are the ways to find new system
conception? Explain in detail what a good system concept must answer?

System conception deals with the genesis of an application. Initially some person,
who understands both business needs and technology, thinks of an idea for an
application. Developers must then explore the idea to understand the needs and
devise possible solutions. The purpose of system conception is to defer details and
understand the big picture — what need does the proposed system meet, can it be
developed at a reasonable cost, and will the demand for the

result justify the cost of building it? Ways to find new system conception:

New Functionality: Add functionality to an existing system

Streamlining: Remove restrictions or generalize the way a system works
Simplification: Let ordinary persons perform tasks previously assigned to
specialists

Automation: Automate manual processes

Integration: Combine functionality from different systems

IAnalogies: Look for analogies in other problem domains and see if they have useful
ideas

Globalization: Travel to other countries and observe their cultural and business
practices

A good system conception should answer the following questions.

\Who is the application for? (person/organization/stakeholder/financial sponsor/end
user)
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What problem will it solve?
Where will it be used?
When is it needed?

\Why is it needed?

How will it work?

Part—11

What do you mean by Domain Class Model? Explain the steps performed in| 10 Co3
constructing the domain Class model.

12.2.7 Keeping the Right Attributes
Eliminate unnecessary and incorrect attributes with the following criteria.

B Objects. If the independent existence of an element is important, rather than just its val-
ue, then it is an object. For example, boss refers to a class and salary is an attribute. The
distinction often depends on the application. For example, in a mailing list ciry might be
considered as an attribute, while in a census City would be a class with many attributes
and relationships of its own. An element that has features of its own within the given
application is a class.

B Qualifiers. If the value of an autribute depends on a particular context, then consider re-
stating the attribute as a qualifier. For example, employeeNumber is not a unique prop-
erty of a person with two jobs; it qualifies the association Company employs person.

B Names. Names are often better modeled as qualifiers rather than attributes. Test: Does the
name select unique objects from a set? Can an object in the set have more than one name?
If so, the name qualifies a qualified association. If a name appears to be unique in the
world, you may have missed the class that is being qualified. For example, department-
Name may be unique within a company, but eventually the program may need to deal with
more than one company. It is better to use a qualified association immediately.
A name is an attribute when its use does not depend on context, especially when it
need not be unique within some set. Names of persons, unlike names of companies, may
be duplicated and are therefore attributes.

B Identifiers. OO languages incorporate the notion of an object identifier for unambigu-
ously referencing an object. Do not include an attribute whose only purpose is to iden-
tify an object, as object identifiers are implicit in class models. Only list attributes that
exist in the application domain. For example, accountCode is a genuine attribute; Banks
assign accountCodes and customers see them. In contrast, you should not list an internal
transactionlD as an attribute, although it may be convenient to generate one during im-
plementation.

B Attributes on associations. If a value requires the presence of a link, then the property
is an attribute of the association and not of a related class. Attributes are usually obvious
on many-to-many associations; they cannot be attached to either class because of their




multiplicity. For example, in an association between Person and Club the attribute mem-
bershipDate belongs to the association, because a person can belong to many clubs and
a club can have many members. Attributes are more subtle on one-to-many associations
because they could be attached to the “many” class without losing information. Resist
the urge to attach them to classes, as they would be invalid if multiplicity changed. At-
tributes are also subtle on one-to-one associations.

B Internal values. If an attribute describes the internal state of an object that is invisible
outside the object, then eliminate it from the analysis.

B Fine detail. Omit minor attributes that are unlikely to affect most operations.

B Discordant attributes. An attribute that seems completely different from and unrelated
to all other attributes may indicate a class that should be split into two distinct classes.
A class should be simple and coherent. Mixing together distinct classes is one of the ma-
jor-causes of troublesome models. Unfocused classes frequently result from premature
consideration of implementation decisions during analysis.

B Boolean attributes. Reconsider all boolean attributes. Often you can broaden a boolean
attribute and restate it as an enumeration [Coad-95).

ATM example. We apply these criteria to obtain attributes for each class (Figure 12.10).

Some tentative attributes are actually qualifiers on associations. We consider several aspects
of the model.

W BankCode and cardCode are present on the card. Their format is an implementation de-
tail, but we must add a new association Bank issues CashCard. CardCode is a qualifier
on this association; bankCode is the qualifier of Bank with respect to Consortium.

B The computers do not have state relevant to this problem. Whether the machine is up or
down is a transient attribute that is part of implementation.

W Avoid the temptation to omit Consortium, even though it is currently unique. It provides
the context for the bankCode qualifier and may be useful for future expansion.

Keep in mind that the ATM problem is just an example. Real applications, when fleshed out,
tend to have many more attributes per class than Figure 12,10 shows.

(OR)

\What is Application class model? Explain the steps to construct the application class
model.

13.2 Application Class Model

Application classes define the application itself, rather than the real-world objects that the ap-
plication acts on. Most application classes are computer-oriented and define the way that users
perceive the application. You can construct an application class model with the following steps.
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Figure 13.6 Organizing use cases. Once the basic use cases are identified,
you can organize them with relationships.

Specify user interfaces. [13.2.1]

Define boundary classes. [13.2.2)

Determine controllers, [13.2.3]

Check against the interaction model. [13.2.4]

13.2.1 Specifying User Intet:faces

Mosti ions can be sep d into two parts: application logic and the user interface. A
user interface is an object or group of objects that provides the user of a system with a co-
herent way to access its domain objects, commands, and application options. During analysis
the emphasis is on the information flow and control, rather than the presentation format. The
same program logic can accept input from command lines, files, mouse buttons, touch pan-
els, physical push buttons, or remote links, if the surface details are carefully isolated.
During analysis treat the user interface at a coarse level of detail. Don’t worry about how
t input individual picces of data. Instead, try to determine the commands that the user can
perform—a command is a large-scale request for a service. For example, “make a flight res-
ervation” and “find matches for a phrase in a database” would be commands. The format of
inputting the information for the commands and invoking them is relatively easy to change,
so work on defining the commands first.
Nevertheless, it is acceptable to sketch out a sample interface to help you visualize the
peration of an application and see if anything important has been forgotten. You may also




want to mock up the interface so that users can try it. Dummy procedures can simulate ap-
plication logic. Decoupling application logic from the user interface lets you evaluate the
“look and feel” of the user interface while the application is under development.
ATM example. Figure 13.7 shows a possible ATM layout. Its exact details are not im-
portant at this point. The important thing is the information exchanged.
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Figure 13.7 Format of ATM interface. Sometimes a sample interface
can help you visualize the operation of an application.

13.2.2 Defining Boundary Classes
A system must be able to operate with and accept information from external sources, but it
should not have its internal structure dictated by them, It is often helpful to define boundary
classes to isolate the inside of a system from the external world. A boundary class is a class
that provides a staging area for communications between a system and an external source. A
boundary class understands the format of one or more external sources and converts infor-
mation for transmission to and from the internal system.

ATM example. It would be helpful to dchnc boundary classes (CashCardBoundary,
AccountBoundarvy) to encapsulate the ¢ ation b the ATM and the consortium.
This interface will increase flexibility and make it easier to support additional consortiums.

13.2.3 Determining Controllers

A controller is an active object that manages control within an application. It receives signals
from the outside world or from objects within the system, reacts to them, invokes operations

on the objects in the system, and sends signals to the outside world. A controller is a piece
of reified behavior captured in the form of an object—behavior that can be manipulated and
transformed more easily than plain code. At the heart of most applications are one or more
controllers that sequence the behavior of the application.

Most of the work in designing a controller is in modeling its state diagram. In the appli-
cation class model, however, you should capture the existence of the controllers in a system,
the control information that each one maintains, and the associations from the controllers to
other objects in the system.

ATM example. It is apparent from the scenarios in Figure 13.2 that the ATM has two
major control loops. The outer loop verifies customers and accounts. The inner loop services
transactions. Each of these loops could most Ily be handled with a cc |l

13.2.4 Checking Against the Interaction Model

As you build the application class model. go over the use cases and think about how they
would work. For example, if a user sends a command to the application, the parameters of
the command must come from some user-interface object, The requesting of the ¢ i
itself must come from some controller object. When the domain and application class models
are in place, you should be able to simulate a use case with the classes. Think in terms of
navigation of the models, as we discussed in Chapter 3. This manual simulation helps to es-
tablish that all the pieces are in place.

ATM example. Figure 13.8 shows a preliminary application class model and the do-
main classes with which it interacts. There are two interfaces—one for users and the other
for communicating with the consortium. The application model just has stubs for these class-
s, because it is not clear how to elaborate them at this time.

Note that the boundary classes “flatten” the data structure and combine information
from multiple domain classes. For simplicity, it is desirable to minimize the number of
boundary classes and their relationships.

The TransactionController handles both queries on accounts and the processing of
transactions. The SessionController manages ATMsessions, each of which services a cus-
tomer. Each ATMsession may or may not have a valid CashCard and Account. The Session-
Controller has a status of ready. impaired (such as out of paper or cash but still able 10
operate for some functions), or down (such as a communications failure). There is a log of
ControllerProblems and the specific problem type (bad card reader, out of paper, out of cash,
communication lines down, etc.).

PART - 111

Specify the steps to construct the application interaction model. Explain any three 10 co3
steps with examples.




13.1 Application Interaction Model

Most domain models are static and operations are unimportant, because a domain as a whole
usually doesn't do anything. The focus of domain modeling is on building a model of intrin-
sic concepts. After completing the domain model we then shift our attention to the details of
an application and consider interaction.

Begin interaction modeling by determining the overall boundary of the system. Then
identify use cases and flesh them out with scenarios and sequence diagrams. You should also
prepare activity diagrams for use cases that are complex or have subtleties. Once you fully
understand the use cases, you can organize them with relationships. And finally check
against the domain class model to ensure that there are no inconsistencies.

You can construct an application interaction model with the following steps.
Determine the system boundary. [13.1.1]

Find actors. [13.1.2]

Find use cases. [13.1.3)

Find initial and final events. [13.1.4)

Prepare normal scenarios. [13.1.5]

Add variation and exception scenarios. [13.1.6]

Find external events. [13.1.7]

Prepare activity diagrams for complex use cases. [13.1:8]

Organize actors and use cases. [13.1.9]
Check against the domain class model. [13.1.10)

13.1.1 Determining the System Boundary

You must know the precise scope of an applicati 1he boundary of the sy in order
to specify functionality. This means that you must decide what the system lm!udesand more
importantly, what it omits, If the system boundary is drawn correctly, you can treat the sys-

tem as a black box in its interactions with the outside world—you can regard the system as
a single object, whose internal details are hidden and changeable. During analysis, you de-
termine the purpose of the system and the view that it presents to its actors. During design,
you can change the internal implementation of the system as long as you maintain the exter-

nal behavior.
Usually, you should not consider humans as part of a sysu:m. unless you are modeling
a human organization, such as a busi orag Humans are actors

that must interact with the system, but their actions are not under the control of the system.
However, you must allow for human error in your system.
ATM example. The ongmal pmblem suu:mcm !mm Chaptef 11 says to “design the
ft to support a g i g both human cashiers and au-
tomatic teller machi Now it is imp that cashier jons and ATM t
tions be \! fi the 's perspective either method of conducting business
should yield the same effect on a bank acccun( Hovm-a in commercial practice an ATM
lication would be sep from a cashier appli ATM application spans banks
wlulc a cashier application is internal to a bank. Both applications would share the same un-
derlying domain model, but each would have its own distinct application model. For this
chapter we focus on ATM behavior and ignore cashier details.

13.1.2 Finding Actors

Once you determine the system boundary, you must identify the external objects that interact
directly wnh the system. These are its actors. Actors include humans, external devices, and
other Y The imp: thing about actors is that they are not under control
of the application, and you must consider them to be somewhat unpredictable. That is, even
though there may be an expected sequence of behavior by the actors, an application’s design
should be robust so that it does not crash if an actor fails to behave as expected.

In finding actors, wemnot hing for individuals but for archetypical behavior,
Each actor rep lized uscr that ises some subset of the system functional-
ity. Examine each extemal object to see if it has several distinct faces. An actor is a coherent
face presented 1o the system, and an extemal object may have more than one actor. It is also
possible for different kinds of external objects to play the part of the same actor.

ATM example. Apamcullrpcnon mnybcbothnbank!tllctmdncwmroflhc
same bank. This is an i 2 but usually uni idence—a person approach
the bank moneorlheolhermleauum FortheATM application, the actors are Customer,
Bank, and Consortium.




13.1.3 Finding Use Cases

For each actor. list the fundamentally different ways in which the actor uses the system. Each
of these ways is a use case. The use cases partition the functionality of a system into a small
number of discrete units, and all system behavior must fall under some use case. You may
have trouble deciding where to place some piece of marginal behavior. Keep in mind that
there are always borderline cases when making partitions: just make a decision even if it is
somewhat arbitrary.

Each use case should represent a kind of service that the system provides—something
that provides value to the actor. Try to keep all of the use cases at a similar level of detail.
For example, if one use case in a bank is “apply for loan,” then another use case should not
be “withdraw cash from savings account using ATM.” The latter description is much more
detailed than the former; a better match would be “make withdrawal.” Try to focus on the
main goal of the use case and defer implementation choices.

At this point you can draw a preliminary use case diagram. Show the actors and the use
cases, and connect actors 1o use cases. Usually you can associate a use case with the actor
that initiates it, but other actors may be involved as well. Don’t worry if you overlook some
participating actors. They will become apparent when you elaborate the use cases. You
should also write a one or two sentence summary for each use case.

ATM example. Figure 13.1 shows the use cases, and the bullets summarize them.

ATM

(25%)

< (== \'%
e %i
O P

Figure 13.1 Use case diagram for the ATM. Use cases partition the functionality of
a system into a small number of discrete units that cover its behavior.

W Initiate session. The ATM establishes the identity of the user and makes available a list
of accounts and actions.

®  Query account. The system provides general data for an account, such as the current
balance, date of last transaction, and date of mailing for last statement.

B Process transaction. The ATM system performs an action that affects an account's bal-
ance, such as deposit. withdraw, and transfer. The ATM ensures that all completed
transactions are ultimately written to the bank’s database.

®  Transmit data. The ATM uses the ium's facilities to icate with the ap-
propriate bank computers.

13.1.4 Finding Initial and Final Events

Use cases partition system functionality into di pieces and show the actors that are in-

volved with each picce. but they do not show the behavior clearly. To und d behavi

you must und: d the i g that cover each use case. You can start by find-

ing the events that initiate cach use case. Determine which actor initiates the use case and
define the event that it sends to the system. In many cases, the initial event is a request for
the service that the use case provides. In other cases, the initial event is an occurrence that
triggers a chain of activity. Give this event a meaningful name, but don't try to determine its
exact parameter list at this point.

You should also determine the final event or events and how much to include in each use
case. For example, the use case of applying for a loan could continue until the application is
submitted, until the loan is granted or rejected, until the money from the loan is delivered, or
until the loan is finally paid off and closed. All of these could be reasonable choices. The
modeler must define the scope of the use case by defining when it terminates.

ATM example. Here are initial and final events for cach use case,

W Initiate session, The initial event is the customer’s insertion of a cash card, There are
two final events: the system keeps the cash card or the system retumns the cash card.

®  Query account. The initial event is a customer’s request for account data. The final
event is the system's delivery of account data to the customer,

W Process transaction. The initial event is the customer’s initiation of a transaction.

There are two final events: committing or aborting the transaction.

B Transmit data. The initial event could be triggered by a customer's request for account
data. Another possible initial event could be recovery from a network, power, or another
kind of failure. The final event is successful transmission of data.

13.1.5 Preparing Normal Scenarios
For each use case, prepare one or more typical dialogs 1o get a feel for expected system be-
havior. These scenarios illustrate the major interactions, external display formats, and infor-
mation exchanges. A scenario is a sequence of events among a set of interacting objects.
Think in terms of sample interactions, rather than trying to write down the general case di-
rectly. This will help you ensure that important steps are not overlooked and that the overall
flow of interaction is smooth and correct.

For most probi logical depends on the seq ofi ions and not
their exact times. (Real-time systems, however, do have specific timing requirements on in-
teractions, but we do not address real-time systems in this book.)




S imes the probl describes the full i q but most of
memywmllhmlomw(otulmﬂeuhun)meinwmdmm For example,
the ATM problem statement indicates the need to obtain transaction data from the user but is
vague about exactly what parameters are needed and in what order to ask for them. During

analysis, try to avoid such details. For many applications, the order of gathering input is not
crucial and can be deferred to design.

Prepare scenarios for “normal” cases—ii i wnhommy | inputs or error
conditions, An event occurs wh infe ion is db an object in the
symmmdmoumdeag«msodnunumamammhmmfmaﬂmvﬂw

hanged are event p For ple, the event p rd entered has the password
value as a parameter. Em\uw-mm are ingful and even The in-

rommoninwchanmumefmmnnmm For each event, identify the actor
(system, user, or other external agent) that caused the event and the parameters of the event.
ATM example. Figure 13.2 shows a normal scenario for each use case,

13.1.6 memmm

After you have prepared typical ider “special” cases, such as omitted input,
maximum and mini values.and peated values. Then 1 mmm:ludmg
invalid values and failures to respond. For many i i i error handling is

lhemostdxﬁcullpmo!dcvelopman.lfpomblelllow!heuwtoabonnopauionotmll

back to a well-defined starting point at each step, Finally consider various other kinds of in-

mlmwmbemh-donhucanmmnxhnhhmmdmw
ATM le. Some and ptions follow. We could prepare scenarios for

exhofmmlwdlnmgomghdndemhhat (See the exercises.)

The ATM can’t read the card.

The card has expired.

The ATM times out waiting for a response.

The amount is invalid.

The machine is out of cash or paper.

The communication lines are down.

The ion is rejected b of suspicious p of card usage.

Mueadd:mndmnosfondrmmsmwpamoftheATMsyumt.mhumhoﬁz

ing new cards, adding banks to the jium, and obtaining ion logs. We will not

explore these aspects.

13.1.7 Finding External Events

Examine the scenarios to find all external events—include all inputs, decisions, interrupts,
and interactions to or from users or external devices. An event can trigger effects for a target
object. Intemal computation steps are not events, except for computations that interact with

The ATM asks the user to insert a card.

The user insents a cash card.

The ATM accepts the card and reads its serial number.

The ATM requests the

The user enters “1234
Initiate The ATM verifies the by ing the and bank
session The ATM displays a menu of accounts and commands.

The user the d to the i

The ATM prints a receipt, ejects the card. and asks the user 1o take them.

The user takes the receipt and the card,

The ATM asks the user to insert a card

The ATM displays a menu of accounts and commands

The user chooses 10 query an
Query The ATM contacts the jum and bank which retum the data.
account The ATM displays account data for the user.

The ATM displays a menu of accounts and commands

The ATM ys a menu of s

The user selects an account withdrawal

The ATM asks for the amount of cash.

The user enters $100.

Process The ATM verifies that the withdrawal satisfies its policy limits.
transaction mwmmmmmmmmmm
The ATM dispenses the cash and asks the user o take it.

The user takes the cash,
The ATM displays a menu of accounts and commands.
m:o?\:omnwmwn? itto the
al o bank
Transmit The bank receives the request
data The bank sends the data to

Figure 13.2 Normal ATM scenarios. Prepare one or more scenarios for cach use case.

the external world. Use scenarios to find normal events, but don’t forget unusual events and
error conditions.

A transmittal of information to an object is an event. For example, enter password is a
message sent from external agent User to application object ATM. Some information flows
are implicit. Many events have parameters,

Group together under a single name events that have the same effect on flow of control,
even if their parameter values differ. For example, enter password should be an event, whose
parameter is the password value, The choice of password value does not affect the flow of




insen cand, enter password, select account, select deposit
seloct withdeawal, teamfer funds, query account
enter amount, take cash. take card
cancel. terminate contimee

-
User -
display main screen ATM
unreadable card message, cancelod message !
reGuEsL Passwond, Fogeest amount L
cject card, faidere message
dispense cash, request take cash e poi -y
reguest continuation Stlon :""“""O'K'
print receipt, request take card m;"m"““m * 1 o
bad accoent message verify funds
bad bank code messape had bank code
duplay tranaction meny confirm funds

verify cand with bank. verify funds
process bank transaction

mmﬂ.«d‘mmm‘
M transaction fasled, bank accoust OK
bad bank accoust, bad bank password

Figure 13.4 Events for the ATM case study. Tally the events in the sce-
narios and note the classes that send and receive each event.

13.1.8 Preparing Activity Diagrams for Complex Use Cases
Sequence diagrams capture the dialog and interplay between actors, but they do not clearly
show altematives and decisions. For example, you need one sequence diagram for the main

flow of i ion and additi di for each error and decision point. Ac-
tivity diagrams let you consolidate aJl this bcha\ ior by documcnnng forks and merges in the
control flow. It is certainly appropriate 1o use activity diag to d busi logic

during analysis, but do not use them as an excuse to begin implementation.

ATM example. As Figure 13.5 shows, when the user insents a card, there are many pos-
sible responses. Some responses indicate a possible problem with the card or account; hence
the ATM retains the card. Only the successful completion of the tests allows ATM processing
1o proceed.

13.1.9 Organizing Actors and Use Cases
The next step is to organize use cases with relationships (include, extend, and generaliza-
tion—see Chapter 8). This is especially helpful for large and complex systems. As with the
class and state models, we defer organization until the base use cases are in place. Otherwise,
there is too much of a risk of distorting the to match p ived notions,
Similarly, you can also organize actors with g lization. For ie, an Admini
trator might be an Operator with additional privileges.
ATM example. Figure 13.6 organizes the use cases with the include relationship,

P
(rowmears) Cwe-«')—ﬁ\ =

[communications down) [bad bank code or bad account)

(Wd OK]
[communications down] [account fraud alen]

[good account)
[communications down)

request p

[{communications down] [multiple password fallures)

(oomdpusww\d]] L
O T
Figure 13.5 Acﬂvltydhu-nmlorarﬂverlﬂuquwcanuummy

tod busi logic, but do not use them as
an excuse to begin premature implementation,

13.1.10 Checking Against the D in Class Model
At this point, the application and domain models should be mostly consistent. The actors,
use cases, and scenarios are all based on classes and concepts from the domain model. Recall
that one of the steps in constructing the domain class model is to test access paths. In reality,
such testing is a first attempt at use cases.

Cross check the application and domain models to ensure that there are no inconsisten-
cies. Examine the scenarios and make sure that the domain model has all the necessary data.
Also make sure that the domain model covers all event parameters.

(OR)

Discuss Application state model? Explain the steps to construct the application
state model..

The application state model focuses on application classes and augments the
domain state

model. Application classes are more likely to have important temporal behavior
than domain

classes.
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First identify application classes with multiple states and use the interaction
model to

find events for these classes. Then organize permissible event sequences for each
class with

Userlnterface Consortiumlinterface
CashCardBoundary * AccountBoundary
bankCode bankCode
cardCode accountCode ProblemType
serialNumber balance
password creditLimit name
limit accountType 1
bankName bankName
customerName *
customerAddress ControllerProblem
. ' startDateTime
Remote |activeTransaction TransactionController stopDateTime
Transaction | == 0..1 = e
startDateTime
tiveCard :
activetar
CashCard 01 011 ATMsession SessionController
D, '_ 011 startDateTime * : status
Account [activeAccount

Figure 13.8 ATM application class model

a state diagram. Next, check the various state diagrams to make sure that
common events

match. And finally check the state diagrams against the class and interaction
models to ensure

consistency.

You can construct an application state model with the following steps.

m Determine application classes with states. [13.3.1]

m Find events. [13.3.2]

m Build state diagrams. [13.3.3]

m Check against other state diagrams. [13.3.4]

m Check against the class model. [13.3.5]

m Check against the interaction model. [13.3.6]

13.3.1 Determining Application Classes with States

The application class model adds computer-oriented classes that are prominent
to users and

important to the operation of an application. Consider each application class and
determine

which ones have multiple states. User interface classes and controller classes are
good candidates

for state models. In contrast, boundary classes tend to be static and used for
staging

data import and export—consequently they are less likely to involve a state
model.

ATM example. The user interface classes do not seem to have any substance.
This is

probably because our understanding of the user interface is incomplete at this
point in development. The boundary classes also lack state behavior. However,
the controllers do have important

states that we will elaborate.

13.3.2 Finding Events




For the application interaction model, you prepared a number of scenarios. Now
study those

scenarios and extract events. Even though the scenarios may not cover every
contingency, they

ensure that you do not overlook common interactions and they highlight the
major events.

Note the contrast between the domain and application processes for state models.
\With

the domain model, first we find states and then we find events. That is because
the domain

model focuses on data—significant groupings of data form states that are subject
to events.

\With the application model, in contrast, first we find events and then we
determine states.

The application model’s early attention to events is a consequence Of the
emphasis on behavior—

use cases are elaborated with scenarios that reveal events.

ATM example. We revisit the scenarios from the application interaction model.
Some

events are: insert card, enter password, end session, and take card.

13.3.3 Building State Diagrams

The next step is to build a state diagram for each application class with temporal
behavior.

Choose one of these classes and consider a sequence diagram. Arrange the
events involving

the class into a path whose arcs are labeled by the events. The interval between
any two

events is a state. Give each state a name, if a name is meaningful, but don’t
bother if it is not.

Now merge other sequence diagrams into the state diagram. The initial state
diagram will be

a sequence of events and states. Every scenario or sequence diagram corresponds
to a path

through the state diagram.

Now find loops within the diagram. If a sequence of events can be repeated
indefinitely,

then they form a loop. In a loop, the first state and the last state are identical. If
the object

“remembers” that it has traversed a loop, then the two states are not really
identical, and a

simple loop is incorrect. At least one state in a loop must have multiple
transactions leaving

it or the loop will never terminate.

Once you have found the loops, merge other sequence diagrams into the state
diagram.

Find the point in each sequence diagram where it diverges from previous ones.
This point

corresponds to an existing state in the diagram. Attach the new event sequence to
the existing

state as an alternative path. While examining sequence diagrams, you may think
of other possible

events that can occur at each state; add them to the state diagram as well.

The hardest thing is deciding at which state an alternate path rejoins the existing
diagram.




Two paths join at a state if the object “forgets” which one was taken. In many
cases,

it is obvious from knowledge of the application that two states are identical. For
example, inserting two nickels into a vending machine is equivalent to inserting
one dime.Beware of two paths that appear identical but can be distinguished
under some circumstancesFor example, some systems repeat the input sequence
if the user makes an error entering information but give up after a certain number
of failures. The repeat sequence is

almost the same except that it remembers the past failures. The difference can be
glossedover by adding a parameter, such as number of failures, to remember
information. At least one transition must depend on the parameter.

The judicious use of parameters and conditional transitions can simplify state
diagrams considerably but at the cost of mixing together state information and
data. State diagrams with too much data dependency can be confusing and
counterintuitive. Another alternative is to partition a state diagram into two
concurrent subdiagrams, using one subdiagram for the main line and the other
for the distinguishing information. For example, a subdiagram to allow

for one user failure might have states No error and One error.

After normal events have been considered, add variation and exception cases.
Consider events that occur at awkward times—for example, a request to cancel a
transaction after ithas been submitted for processing. In cases when the user (or
other external agent) may fail to respond promptly and some resource must be
reclaimed, a time-out event can be generated after a given interval. Handling
user errors cleanly often requires more thought and code than the normal case.
Error handling often complicates an otherwise clean and compact program
structure, but it must be done.

You are finished with the state diagram of a class when the diagram covers all
scenarios

and the diagram handles all events that can affect a state. You can use the state
diagram to

suggest new scenarios by considering how some event not already handled
should affect a

state. Posing “what if” questions is a good way to test for completeness and
error-handling

capabilities.

If there are complex interactions with independent inputs, you can use a nested
state diagram,

as Chapter 6 describes. Otherwise a flat state diagram suffices. Repeat the above
process

of building state diagrams for each class that has time-dependent behavior.

ATM example. Figure 13.9 shows the state diagram for the SessionController. The
middle of the diagram has the main behavior of processing the card and password. A
communications

failure can interrupt processing at any time. The ATM returns the card upon a
communications failure, but keeps it if there are any suspicious circumstances. After
finishing

transactions, receipt printing occurs in parallel to card ejection, and the user can
take the

receipt and card in any order.




Figure 13.10 and Figure 13.11 show the state diagram for the 7ransactionController
that

is spawned by the SessionController. (See the exercises for the other subdiagrams
of Figure

13.10.) We have separated the TransactionController and the SessionController
because

their purposes are much different—the SessionController focuses on verifying users,
while

the 7ransactionController services account inquiries and balance changes.

13.3.4 Checking Against Other State Diagrams

Check the state diagrams of each class for completeness and consistency. Every
event should

have a sender and a receiver, occasionally the same object. States without
predecessors or

successors are suspicious; make sure they represent starting or termination points
of the interaction

sequence. Follow the effects of an input event from object to object through the
system

to make sure that they match the scenarios. Objects are inherently concurrent;
beware of

synchronization errors where an input occurs at an awkward time. Make sure that

corresponding

events on different state diagrams are consistent.
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Flgure 13.9 State diagram for SessionController. Build a state diagram
for each application class with temporal behavior.
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Flgure 13.10 State dlagram for TransactionController. Obtain informa-
tion from the scenarios of the interaction model.
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Getting amount
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enter amount(amount)

Getting source account \
do /query source account /

enter account (source)
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do /complain do /display confirm
y enter account (target)

Perform transfer
not OK do /perform transfer ok / add to receipt log

Flgure 13.11 State dlagram for Transfer. This diagram elaborates the
Transfer state in Figure 13.10.

ATM example. The SessionController initiates the TransactionController, and the ter-
mination of the TransactionController causes the SessionController Lo resume.

13.8.5 Checking Against the Class Model

Similarly, make sure that the state diagrams are consistent with the domain and application
class models.

ATM example. Multiple ATMs can potentially concurrently access an account. Ac-
count access needs to be controlled to ensure that only one update at a time is applied. We
will not resolve the details here.

13.8.6 Checking Against the Interaction Model

When the state model is ready, go back and check it against the scenarios of the interaction
model. Simulate each behavior sequence by hand and verify that the state diagram gives the
correct behavior. If an error is discovered, change either the state diagram or the scenarios.
Sometimes a state diagram will uncover irregularities in the scenarios, so don’t assume that
the scenarios are always correct.

Then take the state model and trace out legitimate paths. These represent additional sce-
narios. Ask yourself whether they make sense. If not, then modify the state diagram. Often,
however, you will discover useful behavior that you had not considered before. The mark of
a good design is the discovery of unexpected information that follows from the design, prop-
erties that appear meaningful (and often seem obvious) once they are observed.

ATM example. As best as we can tell right now, the state diagrams are sound and con-
sistent with the scenarios.

pPart -1V

\What is reusability? What are the reusable things? Explain.
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[Reuse is often cited as an advantage of OO technology. but reuse does not happen
automatically. There are two very different aspects of reuse—using existing things and creating
reusable new things. It is much easier to reuse existing things than to design new things for
uncertain uses to come.

Reusable things include models, libraries. frameworks. and patterns. Reuse of models is
often the most practical form of reuse. The logic in a model can apply to multiple problems.

1 Libraries

A Hhbrary is a collection of classes that are useful in many contexts. The collection of classes
must be carefully organized, so that users can find them The classes must have accurate and
thorough descriptions to help users determine their relevance. [Korson-92] notes several
qualities of “good™ class libraries.

= Coherence. A class library should be organized about a few. well-focused themes.

= Completeness. A class library should provide complete behavior for the chosen themes.

= Consistency. Polymorphic operations should have consistent names and signatures

across classes.

m Efficiency. A library should provide alternative implementations of algorithms (such as
various sort algorithms) that trade time and space.

= Extensibility. The user should be able to define subclasses for library classes.

m Genericity. A library should use parameterized class definitions where appropriate.

= Argument validation. An application may validate arguments as a collection or individually
as entered. Collective validation is appropriate for command interfaces: the

user enters all arguments. and only then are they checked. In contrast, responsive user
interfaces validate each argument or interdependent group of arguments as it is entered.

A combination of class libraries, some that validate by collection and others that validate by
individual, would yield an awkward user interface.

= Error handling. Class libraries use different error-handling techniques. Methods in one
library may retum error codes to the calling routine. for example. while methods in another
library may directly deal with errors.

= Control paradigms. Applications may adopt event-driven or procedure-driven control.
With event-driven control the user interface invokes application methods. With procedure-
driven control the application calls user interface methods. It is difficult to combine both kinds
of user interface within an application.

m Group operations. Group operations are often inefficient and incomplete. For example. an
object-delete primitive may acquire database locks. make the deletion. and then

commit the transaction. If you want to delete a group of objects as a transaction. the class
library must have a group-delete function.

= Garbage collection. Class libraries use different strategies to manage memory allocation and
avoid memory leaks. A library may manage memory for strings by retuming a

pointer to the actual string. returning a copy of the string. or returning a pointer with
read-only access. Garbage collection strategies may also differ: mark and sweep. reference
counting, or letting the application handle garbage collection (in C++. for example).

= Name collisions. Class names. public attributes. and public methods lie within a global
name space, so you must hope they do not collide for different class libraries. Most class
libraries add a distinguishing prefix to names to reduce the likelihood of collisions.




2 Frameworks

A framework is a skeletal structure of a program that must be elaborated to

build a complete application. This elaboration often consists of specializing abstract classes
with behavior specific to an individual application. A class library may accompany a
framework, so that the user can perform much of the specialization by choosing the appropriate
subclasses rather than programming subclass behavior from scratch. Frameworks consist of
more than just the classes involved and include a paradigm for flow of control and shared
invariants. Frameworks tend to be specific to a category of applications; framework class
libraries are typically application specific and not suitable for general use.

3 Patterns

A pattern is a proven solution to a general problem. Various patterns target different phases
of the software development lifecycle. There are patterns for analysis. architecture, design.
and implementation. You can achieve reuse by using existing patterns. rather than reinventing
solutions from scratch. A pattern comes with guidelines on when to use it. as well as
trade-offs on its use.

There are many benefits of patterns. One advantage is that a pattern has been carefully
considered by others and has already been applied to past problems. Consequently. a pattern
is more likely to be correct and robust than an untested. custom solution. Alsc when you use
patterns. you tap into a language that is familiar to many developers. A body of literature is
available that documents patterns. explaining their subtleties and nuances. Patterns are
prototypical model fragments that distill some of the knowledge of experts.

A pattern 1s different from a framework. A pattern is typically a small number of classes
and relationships. In contrast. a framework is much broader in scope (typically at least an
order of magnitude larger) and covers an entire subsystem or application.

(OR)

Explain the steps to design algorithms

Now formulate an algorithm for each operation. The analysis specification tells what the
operation does for its clients, but the algorithm shows how it is done. Perform the following
steps to design algorithms.

= Choose algorithms that minimize the cost of implementing operations.

= Select data structures appropriate to the algorithms.

= Define new internal classes and operations as necessary.

= Assign operations to appropriate classes.

1 Choosing Algorithms

Many operations are straightforward because they simply traverse the class model to retrieve
or change attributes or links. The OCL provides a convenient notation for

expressing such traversals.

However, a class-model traversal cannot fully express some operations. We often use
pseudocode to handle these situations. Pseudocode helps us think about the algorithm while
deferring programming details. For example. many applications involve graphs and the use
of transitive closure.

When efficiency is not an issue, you should use simple algorithms. In practice, only a

few operations tend to be application bottlenecks. Typically. 20% of the operations consume
80% of execution time. For the remaining operations, it is better to have a design that is simple,
understandable. and easy to program than to wring out minor improvements. You can
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focus your creativity on the algorithms for the operations that are a bottleneck. Here
are some considerations for choosing among alternative algorithms.

= Computational complexity. How does processor time increase as a function of data
structure size? It is essential to think about

algorithm complexity—that is. how the execution time (or memory) grows with the
number of input values: constant time. linear, quadratic, or exponential.

= Ease of implementation and understandability. It is worth giving up some performance on
noncritical operations if you can use a simple algorithm.

m Flexibility. You will find yourself extending most programs. sooner or later. A highly
optimized algorithm often sacrifices ease of change. One possibility is to provide two
versions of critical operations.

2 Choosing Data Structures

Algorithms require data structures on which to work. During analysis, you focused on the
logical structure of system information, but during design you must devise data structures

that will permit efficient algorithms. The data structures do not add information to the analysis
model, but they organize it in a form convenient for algorithms. Many of these data

structures are instances of container classes. Such data structures include arrays, lists,

queues. stacks. sets, bags. dictionaries, trees. and many variations. such as priority queues

and binary trees. Most OO languages provide an assortment of generic data structures as part
of their predefined class libraries.

3 Defining Internal Classes and Operations

You may need to invent new, low-level operations during the decomposition of high-level
operations. Some of the low-level operations may be in the “shopping list” of operations from
analysis. But usually you will need to add new internal operations as you expand high-level
operations.

The expansion of algorithms may lead you to create new classes of objects to hold intermediate
results. Typically. the client’s description of the problem will not mention these

low-level classes because they are artifacts.

4 Assigning Operations to Classes

When a class is meaningful in the real world, the operations on it are usunally clear. During
design. however. you introduce internal classes that do not correspond to real-world objects
but merely some aspect of them. Since the intemal classes are invented, they are somewhat
arbitrary. and their boundaries are more a matter of convenience than of logical necessity.
How do you decide what class owns an operation? Ask yourself the following questions.

m Receiver of action. Is one object acted on while the other object performs the action?

In general, it is best to associate the operation with the targer of the operation. rather than
the inifiator.

= Query vs. update. Is one object modified by the operation. while other objects are only
queried for their information? The object that is changed is the target of the operation.

m Focal class. Looking at the classes and associations that are involved in the operation,
which class is the most centrally located in this subnetwork of the class model? If the
classes and associations form a star about a single central class. it is the operation’s target.

= Analogy to real world. If the objects were not software, but were the real-world objects.
what real object would vou push. move, activate. or otherwise manipulate to initiate the
operation?

Sometimes it 1s difficult to assign an operation to a class within a generalization hierarchy.
It is common to move operations up and down in the hierarchy during design. as their scope
is adjusted. Furthermore, the definitions of the subclasses within the hierarchy are often fluid

Part-V

\What tasks are involved in the process of design optimization? Explain any one in

detail.
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First get a clean design working. Then you can optimize it. You might find that your concern
was misplaced.

The design model builds on the analysis model. The analysis model captures the logic

of a system, while the design model adds development details. You can optimize the inefficient
but semantically correct analysis model to improve performance. but an optimized system is
more obscure and less likely to be reusable. You must strike an appropriate balance

between efficiency and clarity. Design optimization involves the following tasks.

m Provide efficient access paths.

= Rearrange the computation for greater efficiency.

m Save mntermediate results to avoid recomputation.

1 Adding Redundant Associations for Efficient Access

Redundant associations are undesirable during analysis because they do not add information.
Design, however, has different motivations and focuses on the viability of a model for
implementation. Can the associations be rearranged to optimize critical aspects of the system?
Should new associations be added? Can existing associations be omitted? The associations
from analysis may not form the most efficient network, when you consider access patterns
and relative frequencies.

For an example, consider the design of a company’s employee skills database. Figure

15.5 shows a portion of the analysis class model. The operation Company.findSkill() returs
a set of persons in the company with a given skill. For example, an application might need
all the employees who speak Japanese.

Employs HasSkil

Figure 15.5 Analysis model for person skills. Derived daia is undesirable
during analysis because it does not add information.

Several improvements are possible. First, you could use a hashed set for HasSkll rather

than an unordered list. An operation can perform hashing in constant time, so the cost of testing
whether a person speaks Japanese is constant, provided that there is a unique Skl object

for speaks Japanese. This rearrangement reduces the number of tests from 10,000 to 1000—
one per employee.

m Frequency of access. How often is the operation called?

= Fan-out. What is the “fan-out” along a path through the model? Estimate the average

count of each “many” association encountered along the path Multiply the individual

fan-outs to obtain the fan-out of the entire path. which represents the number of accesses

on the last class in the path. “One™ links do not increase the fan-out. although they increase the
cost of each operation slightly; don’t worry about such small effects.

m Selectivity. What is the fraction of “hits” on the final class—that is. objects that meet
selection criteria and are operated on? If the traversal rejects most objects, then a simple
nested loop may be inefficient at finding target objects.

2 Rearranging Execution Order for Efficiency
After adjusting the structure of the class model to optimize frequent traversals, the next thing
to optimize is the algorithm itself. One key to algorithm optimization is to eliminate dead

paths as early as possible. For example. suppose an application must find all employees who
speak both Japanese and French. Suppose 5 employees speak Japanese and 100 speak
French: it is better to test and find the Japanese speakers first. then test if they speak French.
In general. it pays to narrow the search as soon as possible. Sometimes you must invert the
execution order of a loop from the original specification.

3 Saving Derived Values to Avoid Recomputation

Sometimes it is helpful to define new classes to cache derived attributes and avoid
recomputation. You must update the cache if any of the objects on which it depends are
changed.

There are three ways to handle updates.

m Explicit update. The designer inserts code into the update operation of source attributes

to explicitly update the derived attributes that depend on it.

= Periodic recomputation. Applications often update values in bunches. You could recompute
all the derived attributes periodically, instead of after each source change. Periodic
recomputation is simpler than explicit update and less prone to bugs. On the other

hand. if the data changes incrementally a few objects at a time. full recomputation can

be inefficient.

m Active values. An acfive value is a value that is automatically kept consistent with its

source values. A special registration mechanism records the dependency of derived attributes on
source attributes. The mechanism monitors the values of source attributes

and updates the values of the derived attributes whenever there is a change. Some programming
languages provide active values

(OR)




10

Explain allocation of subsystems

You must allocate each concurrent subsystem to a hardware unit, either a general-purpose
processor or a specialized functional unit as follows.

m Estimate performance needs and the resources needed to satisfy them.

m Choose hardware or software implementation for subsystems.

= Allocate software subsystems to processors to satisfy performance needs and minimize
interprocessor communication.

m Determine the connectivity of the physical units that implement the subsystems.

1 Estimating Hardware Resource Requirements

The decision to use multiple processors or hardware functional units is based on a need for
higher performance than a single CPU can provide. The number of processors required depends
on the volume of computations and the speed of the machine. For example, a military

radar system generates too much data in too short a time to handle in a single CPU, even a

very large one. Many parallel machines must digest the data before analyzing a threat.

The system designer must estimate the required CPU processing power by computing

the steady-state load as the product of the number of transactions per second and the time
required to process a transaction. The estimate will usually be imprecise. Often some
experimentation is useful. You should increase the estimate to allow for transient effects. due to
random variations in load as well as to synchronized bursts of activity. The amount of excess
capacity needed depends on the acceptable rate of failure due to insufficient resources. Both
the steady-state load and the peak load are important.

2 Malking Hardware-Software Trade-offs

Object orientation provides a good way for thinking about hardware. Each device is an object
that operates concurrently with other objects (other devices or software). You must decide
which subsystems will be implemented in hardware and which in software. There are two
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main reasons for implementing subsystems in hardware.

m Cost. Existing hardware provides exactly the functionality required. Today it is easier
to buy a floating-point chip than to implement floating point in software. Sensors and
actuators must be hardware. of course.

m Performance. The system requires a higher performance than a general-purpose CPU
can provide, and more efficient hardware is available.

Much of the difficulty of designing a system comes from meeting externally imposed hardware
and software constraints. OO design provides no magic solution. but the external packages can
be modeled nicely as objects.

3 Allocating Tasks to Processors

The system design must allocate tasks for the various software subsystems to processors.
There are several reasons for assigning tasks to processors.

m Logistics. Certain tasks are required at specific physical locations, to control hardware.
or to permit independent operation. For example, an engineering workstation needs its
own operating system to permit operation when the interprocessor network is down.

= Communication limits. The response time or data flow rate exceeds the available
communication bandwidth between a task and a piece of hardware. For example, high
performance graphics devices require tightly coupled controllers because of their high internal
data generation rates.

= Computation limits. Computation rates are too great for a single processor. so several
processors must support the tasks. You can minimize communication costs by assigning
highly interactive subsystems to the same processor. You should assign independent
subsystems to separate processors.

4 Determining Physical Connectivity

After determining the kinds and relative numbers of physical units. you must determine the
arrangement and form of the connections among the physical units.

= Connection topology. Choose the topology for connecting the physical units. Associations
in the class model often correspond to physical connections. Client-server relationships also
correspond to physical connections. Some connections may be indirect; you

should try to minimize the connection cost of important relationships.

= Repeated units. Choose the topology of repeated units. If you have boosted performance by
including several copies of a particular kind of unit or group of units. you must

specify their topology. The topology of repeated units usually has a regular pattern. such as a
linear sequence. a matrix, a tree, or a star.

= Communications. Choose the form of the connection channels and the communication
protocols. The system design phase may be too soon to specify the exact interfaces

among units. but often it is appropriate to choose the general interaction mechanisms

and protocols.

Even when the connections are logical and not physical. you must consider them. For example,
the units may be tasks within a single operating system connected by interprocess
communication (IPC) calls. On most operating systems. such IPC calls are much slower than
subroutine calls within the same program and may be impractical for certain time-critical
connections. In that case. you must combine the tightly linked tasks into a single task and
make the connections by simple subroutine calls.




