

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test – III

Sub: Object Oriented Modeling And Design Code: 18MCA43

Date: 15-06-2021 Duration: 90 mins Max Marks: 50 Sem: IV Branch: MCA

Answer ONE FULL QUESTION from each part

 Marks
OBE

CO RBT

Part – I

 1 What do you mean by Domain State Model? Explain the steps performed in

constructing the domain state model.

10 CO3 L2

(OR)

 2 What do you mean by system conception? What are the ways to find new system

conception? Explain in detail what a good system concept must answer?

 System conception deals with the genesis of an application. Initially some person,

who understands both business needs and technology, thinks of an idea for an

application. Developers must then explore the idea to understand the needs and

devise possible solutions. The purpose of system conception is to defer details and

understand the big picture – what need does the proposed system meet, can it be

developed at a reasonable cost, and will the demand for the

result justify the cost of building it? Ways to find new system conception:

New Functionality: Add functionality to an existing system

Streamlining: Remove restrictions or generalize the way a system works

Simplification: Let ordinary persons perform tasks previously assigned to

specialists

Automation: Automate manual processes

Integration: Combine functionality from different systems

Analogies: Look for analogies in other problem domains and see if they have useful

ideas

Globalization: Travel to other countries and observe their cultural and business

practices
 A good system conception should answer the following questions.

Who is the application for? (person/organization/stakeholder/financial sponsor/end

user)

 10 CO3 L2

What problem will it solve?

Where will it be used?

When is it needed?

Why is it needed?

How will it work?

Part – II

 3 What do you mean by Domain Class Model? Explain the steps performed in

constructing the domain Class model.

10 CO3 L1

(OR)

 4 What is Application class model? Explain the steps to construct the application class

model.

10 CO3 L2

PART - III

 5 Specify the steps to construct the application interaction model. Explain any three

steps with examples.

 10 CO3 L1

(OR)

 6 Discuss Application state model? Explain the steps to construct the application

state model..

The application state model focuses on application classes and augments the

domain state

model. Application classes are more likely to have important temporal behavior

than domain

classes.

 10 CO3 L3

First identify application classes with multiple states and use the interaction

model to

find events for these classes. Then organize permissible event sequences for each

class with

Figure 13.8 ATM application class model

a state diagram. Next, check the various state diagrams to make sure that

common events

match. And finally check the state diagrams against the class and interaction

models to ensure

consistency.

You can construct an application state model with the following steps.

■ Determine application classes with states. [13.3.1]

■ Find events. [13.3.2]

■ Build state diagrams. [13.3.3]

■ Check against other state diagrams. [13.3.4]

■ Check against the class model. [13.3.5]

■ Check against the interaction model. [13.3.6]

13.3.1 Determining Application Classes with States

The application class model adds computer-oriented classes that are prominent

to users and

important to the operation of an application. Consider each application class and

determine

which ones have multiple states. User interface classes and controller classes are

good candidates

for state models. In contrast, boundary classes tend to be static and used for

staging

data import and export—consequently they are less likely to involve a state

model.

ATM example. The user interface classes do not seem to have any substance.

This is

probably because our understanding of the user interface is incomplete at this

point in development. The boundary classes also lack state behavior. However,

the controllers do have important

states that we will elaborate.

13.3.2 Finding Events

For the application interaction model, you prepared a number of scenarios. Now

study those

scenarios and extract events. Even though the scenarios may not cover every

contingency, they

ensure that you do not overlook common interactions and they highlight the

major events.

Note the contrast between the domain and application processes for state models.

With

the domain model, first we find states and then we find events. That is because

the domain

model focuses on data—significant groupings of data form states that are subject

to events.

With the application model, in contrast, first we find events and then we

determine states.

The application model’s early attention to events is a consequence of the

emphasis on behavior—

use cases are elaborated with scenarios that reveal events.

ATM example. We revisit the scenarios from the application interaction model.

Some

events are: insert card, enter password, end session, and take card.

13.3.3 Building State Diagrams

The next step is to build a state diagram for each application class with temporal

behavior.

Choose one of these classes and consider a sequence diagram. Arrange the

events involving

the class into a path whose arcs are labeled by the events. The interval between

any two

events is a state. Give each state a name, if a name is meaningful, but don’t

bother if it is not.

Now merge other sequence diagrams into the state diagram. The initial state

diagram will be

a sequence of events and states. Every scenario or sequence diagram corresponds

to a path

through the state diagram.

Now find loops within the diagram. If a sequence of events can be repeated

indefinitely,

then they form a loop. In a loop, the first state and the last state are identical. If

the object

“remembers” that it has traversed a loop, then the two states are not really

identical, and a

simple loop is incorrect. At least one state in a loop must have multiple

transactions leaving

it or the loop will never terminate.

Once you have found the loops, merge other sequence diagrams into the state

diagram.

Find the point in each sequence diagram where it diverges from previous ones.

This point

corresponds to an existing state in the diagram. Attach the new event sequence to

the existing

state as an alternative path. While examining sequence diagrams, you may think

of other possible

events that can occur at each state; add them to the state diagram as well.

The hardest thing is deciding at which state an alternate path rejoins the existing

diagram.

Two paths join at a state if the object “forgets” which one was taken. In many

cases,

it is obvious from knowledge of the application that two states are identical. For

example, inserting two nickels into a vending machine is equivalent to inserting

one dime.Beware of two paths that appear identical but can be distinguished

under some circumstancesFor example, some systems repeat the input sequence

if the user makes an error entering information but give up after a certain number

of failures. The repeat sequence is

almost the same except that it remembers the past failures. The difference can be

glossedover by adding a parameter, such as number of failures, to remember

information. At least one transition must depend on the parameter.

The judicious use of parameters and conditional transitions can simplify state

diagrams considerably but at the cost of mixing together state information and

data. State diagrams with too much data dependency can be confusing and

counterintuitive. Another alternative is to partition a state diagram into two

concurrent subdiagrams, using one subdiagram for the main line and the other

for the distinguishing information. For example, a subdiagram to allow

for one user failure might have states No error and One error.

After normal events have been considered, add variation and exception cases.

Consider events that occur at awkward times—for example, a request to cancel a

transaction after ithas been submitted for processing. In cases when the user (or

other external agent) may fail to respond promptly and some resource must be

reclaimed, a time-out event can be generated after a given interval. Handling

user errors cleanly often requires more thought and code than the normal case.

Error handling often complicates an otherwise clean and compact program

structure, but it must be done.

You are finished with the state diagram of a class when the diagram covers all

scenarios

and the diagram handles all events that can affect a state. You can use the state

diagram to

suggest new scenarios by considering how some event not already handled

should affect a

state. Posing “what if” questions is a good way to test for completeness and

error-handling

capabilities.

If there are complex interactions with independent inputs, you can use a nested

state diagram,

as Chapter 6 describes. Otherwise a flat state diagram suffices. Repeat the above

process

of building state diagrams for each class that has time-dependent behavior.

ATM example. Figure 13.9 shows the state diagram for the SessionController. The

middle of the diagram has the main behavior of processing the card and password. A

communications

failure can interrupt processing at any time. The ATM returns the card upon a

communications failure, but keeps it if there are any suspicious circumstances. After

finishing

transactions, receipt printing occurs in parallel to card ejection, and the user can

take the

receipt and card in any order.

Figure 13.10 and Figure 13.11 show the state diagram for the TransactionController

that

is spawned by the SessionController. (See the exercises for the other subdiagrams

of Figure

13.10.) We have separated the TransactionController and the SessionController

because

their purposes are much different—the SessionController focuses on verifying users,

while

the TransactionController services account inquiries and balance changes.

13.3.4 Checking Against Other State Diagrams

Check the state diagrams of each class for completeness and consistency. Every

event should

have a sender and a receiver, occasionally the same object. States without

predecessors or

successors are suspicious; make sure they represent starting or termination points

of the interaction

sequence. Follow the effects of an input event from object to object through the

system

to make sure that they match the scenarios. Objects are inherently concurrent;

beware of

synchronization errors where an input occurs at an awkward time. Make sure that

corresponding

events on different state diagrams are consistent.

Part – IV

 7 What is reusability? What are the reusable things? Explain.

 10 CO4 L2

(OR)

 8 Explain the steps to design algorithms

 10 CO4 L2

Part – V

 9 What tasks are involved in the process of design optimization? Explain any one in

detail.

 10 CO4 L1

(OR)

 10 Explain allocation of subsystems

10 CO4 L2

