

Part 1

1. Discuss HPC and HTC in details.

Ans:

According to the specific nature of the problem, a variety of categories for task computing have been

proposed over time. These categories do not enforce any specific application model but provide an

overall view of the characteristics of the problems. They implicitly impose requirements on the

infrastructure and the middleware. Applications falling into this category are high-performance

computing (HPC), high-throughput computing (HTC), and many-task computing (MTC).

According to the specific nature of the problem, a variety of categories for task computing have been

proposed over time. These categories do not enforce any specific application model but provide an

overall view of the characteristics of the problems. They implicitly impose requirements on the

infrastructure and the middleware. Applications falling into this category are high-performance

computing (HPC), high-throughput computing (HTC), and many-task computing (MTC).

High-throughput computing (HTC) is the use of distributed computing facilities for applications

requiring large computing power over a long period of time. HTC systems need to be robust and to

reliably operate over a long time scale. Traditionally, computing grids composed of heterogeneous

resources (clusters, workstations, and volunteer desktop machines) have been used to support HTC.

The general profile of HTC applications is that they are made up of a large number of tasks of which

the execution can last for a considerable amount of time (i.e., weeks or months). Classical 7.1 Task

computing 213examples of such applications are scientific simulations or statistical analyses. It is quite

common to have independent tasks that can be scheduled in distributed resources because they do

not need to communicate. HTC systems measure their performance in terms of jobs completed per

month.

2. Give the architecture of P2P systems. What are the major categories of P2P network?

In a P2P system, every node acts as both a client and a server, providing part of the system resources. Peer

machines are simply client computers connected to the Internet. All client machines act autonomously to join

or leave the system freely. This implies that no master-slave relationship exists among the peers. No central

coordination or central database is needed. In other words, no peer machine has a global view of the entire P2P

system. The system is self-organizing with distributed control.

The figure below shows the architecture of a P2P network at two abstraction levels. Initially, the peers are

totally unrelated. Each peer machine joins or leaves the P2P network voluntarily. Only the participating peers

form the physical network at any time. Unlike the cluster or grid, a P2P network does not use a dedicated

interconnection network. The physical network is simply an ad hoc network formed at various Internet domains

randomly using the TCP/IP and NAI protocols. Thus, the physical network varies in size and topology dynamically

due to the free membership in the P2P network.

Overlay Networks

Data items or files are distributed in the participating peers. Based on communication or file-sharing needs, the

peer IDs form an overlay network at the logical level. This overlay is a virtual network formed by mapping each

physical machine with its ID, logically, through a virtual mapping as shown in the figure. When a new peer joins

the system, its peer ID is added as a node in the overlay network. When an existing peer leaves the system, its

peer ID is removed from the overlay network automatically. Therefore, it is the P2P overlay network that

characterizes the logical connectivity among the peers.

There are two types of overlay networks: unstructured and structured. An unstructured overlay network is

characterized by a random graph. There is no fixed route to send messages or files among the nodes. Often,

flooding is applied to send a query to all nodes in an unstructured overlay, thus resulting in heavy network traffic

and nondeterministic search results. Structured overlay net-works follow certain connectivity topology and rules

for inserting and removing nodes (peer IDs) from the overlay graph. Routing mechanisms are developed to take

advantage of the structured overlays.

System Distributed File Collaborative Distributed P2P

Features Sharing Platform Computing P2P Platform

Attractive Content Instant messaging, Scientific Open networks for

Applications distribution of MP3 Collaborative exploration and public resources

 music, video, open design and gaming social networking

 software, etc.

Operational Loose security and Lack of trust, Security holes, Lack of standards

Problems serious online disturbed by selfish partners, or protection

 copyright violations spam, privacy, and and peer collusion protocols

 peer collusion

Example Gnutella, Napster, ICQ, AIM, Groove, SETI@home, JXTA, .NET,

Systems eMule, BitTorrent, Magi, Multiplayer Geonome@home, FightingAid@home,

 Aimster, KaZaA, Games, Skype, etc. etc.

 etc. etc.

Part 2

3. Discuss the performance metrics and dimensions of scalability for parallel and distributed

systems.

Here, we are mostly interested in metrics that measure

the performance of parallel applications. Speedup is a measure of performance. It

measures the ratio between the sequential execution time and the parallel execution time.

Efficiency is a measure of the usage of the computational capacity.

Scalability is an important indicator in distributed computing and parallel computing. It

describes the ability of the system to dynamically adjust its own computing performance by

changing available computing resources and scheduling methods.

A parallel architecture is said to be scalable if it can be expanded (reduced) to a larger

(smaller) system with a linear increase (decrease) in its performance (cost). ... Scalability is

used as a measure of the system's ability to provide increased performance, for example,

speed as its size is increased.

We can measure the scalability of a distributed system in three main ways:

size scalability, geographical scalability, and administrative scalability. These

three forms of measuring how a system scales are often referred to

as scalability dimensions.

4. Write and explain Amdahl’s law and Gustafson’s Law.

Consider the execution of a given program on a uniprocessor workstation with a total execution time of T

minutes. Now, let’s say the program has been parallelized or partitioned for parallel execution on a cluster of
many processing nodes. Assume that a fraction α of the code must be executed sequentially, called the

sequential bottleneck. Therefore, (1 − α) of the code can be compiled for parallel execution by n processors. The

total execution time of the program is calculated by T + (1 − α)T/n, where the first term is the sequential

execution time on a single processor and the second term is the parallel execution time on n processing nodes.

All system or communication overhead is ignored here. The I/O time or exception handling time is also not

included in the following speedup analysis. Amdahl’s Law states that the speedup factor of using the n-processor

system over the use of a single processor is expressed by:

The maximum speed up of n is achieved only if the sequential bottleneck α is reduced to zero or the code is

fully parallelizable with α = 0. As the cluster becomes sufficiently large, that is, n → ∞, S approaches 1/α, an

upper bound on the speedup S. Surprisingly, this upper bound is independent of the cluster size n. The sequential

bottleneck is the portion of the code that cannot be parallelized. For example, the maximum speedup achieved

is 4, if α = 0.25 or 1 − α = 0.75, even if one uses hundreds of processors. Amdahl’s law teaches us that we should

make the sequential bottle-neck as small as possible. Increasing the cluster size alone may not result in a good

speed up in this case.

Problem with Fixed Workload

In Amdahl’s law, we have assumed the same amount of workload for both sequential and parallel execution of

the program with a fixed problem size or data set. This was called fixed-workload speedup by Hwang and Xu. To

execute a fixed workload on n processors, parallel processing may lead to a system efficiency defined as follows:

Very often the system efficiency is rather low, especially when the cluster size is very large. To execute the

aforementioned program on a cluster with n = 256 nodes, extremely low efficiency E = 1/[0.25 × 256 + 0.75] =

1.5% is observed. This is because only a few processors (say, 4) are kept busy, while the majority of the nodes

are left idling.

Gustafson’s Law

To achieve higher efficiency when using a large cluster, we must consider scaling the problem size to match the

cluster capability. This leads to the following speedup law proposed by John Gustafson (1988), referred as scaled-

workload speedup in [14]. Let W be the workload in a given program. When using an n-processor system, the

user scales the workload to W′ = αW + (1 − α)nW. Note that only the parallelizable portion of the workload is

scaled n times in the second term. This scaled workload W′ is essentially the sequential execution time on a

single processor. The parallel execution time of a scaled workload W′ on n processors is defined by a scaled-

workload speedup as follows:

This speedup is known as Gustafson’s law. By fixing the parallel execution time at level W, the following
efficiency expression is obtained:

For the preceding program with a scaled workload, we can improve the efficiency of using a 256-node cluster

to E′ = 0.25/256 + 0.75 = 0.751. One should apply Amdahl’s law and Gustafson’s law under different workload

conditions. For a fixed workload, users should apply Amdahl’s law. To solve scaled problems, users should

apply Gustafson’s law.

Part 3

5. What is VMM? Explain XEN architecture with suitable diagram.

A fundamental element of hardware virtualization is the hypervisor, or virtual machine manager

(VMM). It recreates a hardware environment in which guest operating systems are installed. There

are two major types of hypervisor: Type I and Type II.

Xen is an open-source initiative implementing a virtualization platform based on paravirtualization.

Initially developed by a group of researchers at the University of Cambridge in the United Kingdom,

Xen now has a large open-source community backing it. Citrix also offers it as a commercial solution,

XenSource. Xen-based technology is used for either desktop virtualization or server virtualization,

and recently it has also been used to provide cloud computing solutions by means of Xen Cloud

Platform (XCP). At the basis of all these solutions is the Xen Hypervisor, which constitutes the core

technology of Xen. Recently Xen has been advanced to support full virtualization using hardware-

assisted virtualization. Xen is the most popular implementation of paravirtualization, which, in

contrast with full virtualization, allows high-performance execution of guest operating systems. This

is made possible by eliminating the performance loss while executing instructions that require

special management. This is done by modifying portions of the guest operating systems run by Xen

with reference to the execution of such instructions. Therefore it is not a transparent solution for

implementing virtualization. This is particularly true for x86, which is the most popular architecture

on commodity machines and servers. A Xen-based system is managed by the Xen hypervisor, which

runs in the highest privileged mode and controls the access of guest operating system to the

underlying hardware. Guest operating systems are executed within domains, which represent virtual

machine instances. Moreover, specific control software, which has privileged access to the host and

controls all the other guest operating systems, is executed in a special domain called Domain 0. This

is the first one that is loaded once the virtual machine manager has completely booted, and it hosts

a HyperText Transfer Protocol (HTTP) server that serves requests for virtual machine creation,

configuration, and termination. This component constitutes the embryonic version of a distributed

virtual machine manager, which is an essential component of cloud computing systems providing

Infrastructure-as-a-Service (IaaS) solutions. Many of the x86 implementations support four different

security levels, called rings, where Ring 0 represent the level with the highest privileges and Ring 3

the level with the lowest ones. Almost all the most popular operating systems, except OS/2, utilize

only two levels: Ring 0 for the kernel code, and Ring 3 for user application and nonprivileged OS

code. This provides the opportunity for Xen to implement virtualization by executing the hypervisor

in Ring 0, Domain 0, and all the other domains running guest operating systems—generally referred

to as Domain U—in Ring 1, while the user applications are run in Ring 3. This allows Xen to maintain

the ABI unchanged, thus allowing an easy switch to Xen-virtualized solutions from an application

point of view. Because of the structure of the x86 instruction set, some instructions allow code

executing in Ring 3 to jump into Ring 0 (kernel mode). Such operation is performed at the hardware

level and therefore within a virtualized environment will result in a trap or silent fault, thus

preventing the normal operations of the guest operating system, since this is now running in Ring 1.

This condition is generally triggered by a subset of the system calls. To avoid this situation, operating

systems need to be changed in their implementation, and the sensitive system calls need to be

reimplemented with hypercalls, which are specific calls exposed by the virtual machine interface of

Xen. With the use of hypercalls, the Xen hypervisor is able to catch the execution of all the sensitive

instructions, manage them, and return the control to the guest operating system by means of a

supplied handler. Paravirtualization needs the operating system codebase to be modified, and hence

not all operating systems can be used as guests in a Xen-based environment. More precisely, this

condition holds in a scenario where it is not possible to leverage hardware-assisted virtualization,

which allows running the hypervisor in Ring -1 and the guest operating system in Ring 0. Therefore,

Xen exhibits some limitations in the case of legacy hardware and legacy operating systems. In fact,

these cannot be modified to be run in Ring 1 safely since their codebase is not accessible and, at the

same time, the underlying hardware does not provide any support to run the hypervisor in a more

privileged mode than Ring 0. Open-source operating systems such as Linux can be easily modified,

since their code is publicly available and Xen provides full support for their virtualization, whereas

components of the Windows family are generally not supported by Xen unless hardware-assisted

virtualization is available. It can be observed that the problem is now becoming less and less crucial

since both new releases of operating systems are designed to be virtualization aware and the new

hardware supports x86 virtualization.

6. Explain para virtualization technique.

Paravirtualization. This is a not-transparent virtualization solution that allows implementing thin

virtual machine managers. Paravirtualization techniques expose a software interface to the virtual

machine that is slightly modified from the host and, as a consequence, guests need to be modified.

The aim of paravirtualization is to provide the capability to demand the execution of performance-

critical operations directly on the host, thus preventing performance losses that would otherwise be

experienced in managed execution. This allows a simpler implementation of virtual machine

managers that have to simply transfer the execution of these operations, which were hard to

virtualize, directly to the host. To take advantage of such an opportunity, guest operating systems

3.3 Taxonomy of virtualization techniques 85need to be modified and explicitly ported by remapping

the performance-critical operations through the virtual machine software interface. This is possible

when the source code of the operating system is available, and this is the reason that

paravirtualization was mostly explored in the opensource and academic environment. Whereas this

technique was initially applied in the IBM VM operating system families, the term paravirtualization

was introduced in literature in the Denali project [24] at the University of Washington. This

technique has been successfully used by Xen for providing virtualization solutions for Linux-based

operating systems specifically ported to run on Xen hypervisors. Operating systems that cannot be

ported can still take advantage of paravirtualization by using ad hoc device drivers that remap the

execution of critical instructions to the paravirtualization APIs exposed by the hypervisor. Xen

provides this solution for running Windows-based operating systems on x86 architectures. Other

solutions using paravirtualization include VMWare, Parallels, and some solutions for embedded and

real-time environments such as TRANGO, Wind River, and XtratuM.

Part 4

7. List and explain data centre management issues.

The demand for new on-demand technology services and the cost of deploying and managing
them continue to skyrocket. In order to manage deepening costs, complex deployments, and
ensure reliability and uptime, data center managers need access to information and data that
isn’t always readily available. These are the top five challenges data center managers face.

Challenge 1: Maintaining Availability and Uptime

If you’re using spreadsheets or homegrown tools to manage your server information, you
probably already know the information stored can be outdated, inaccurate, or incomplete. This
can prove challenging when unplanned downtime requires troubleshooting, or when attempting
to map the power chain.

Challenge 2: Improving Utilization of Capacity (Power, Cooling, Space)

In a dynamic data center it is almost impossible to understand how much space, power, and
cooling you have; predict when will you run out, which server is the best for a new services, and
just how much power is needed to ensure uptime and availability.

Challenge 3: Reporting Reduced Operating Expenses

It’s not enough to implement solutions that reduce operating expenses, you also have to prove it.
According to Uptime institute, “Going forward, enterprise data center managers will need to be
able to collect cost and performance data, and articulate their value to the business in order to
compete with third party offerings.”

Challenge 4: Managing Energy Usage & Costs

According to a NY Times article, “Most data centers, by design, consume vast amounts of energy
in an incongruously wasteful manner…online companies typically run their facilities at maximum
capacity around the clock…as a result, data centers can waste 90 percent or more of the
electricity they pull off the grid.”

Challenge 5: Improving Staff Productivity

Non-automated or manual systems require facilities and IT staff to spend an extraordinary
amount of time logging activities into spreadsheets. This takes away time that can be spent
making strategic decisions for the data center and improving service offerings.

8. Discuss five public cloud offerings of PaaS.

Platform-as-a-Service (PaaS) solutions provide a development and deployment platform for

running applications in the cloud. They constitute the middleware on top of which

applications are built. Application management is the core functionality of the middleware.

PaaS implementations provide applications with a runtime environment and do not expose

any service for managing the underlying infrastructure. They automate the process of

deploying applications to the infrastructure, configuring application components,

provisioning and configuring supporting technologies such as load balancers and databases,

and managing system change based on policies set by the user. Developers design their

systems in terms of applications and are not concerned with hardware (physical or virtual),

operating systems, and other low-level services. The core middleware is in charge of

managing the resources and scaling applications on demand or automatically, according to

the commitments made with users. From a user point of view, the core middleware exposes

interfaces that allow programming and deploying applications on the cloud. These can be in

the form of a Web-based interface or in the form of programming APIs and libraries. The

specific development model decided for applications determines the interface exposed to the

user. Some implementations provide a completely Web-based interface hosted in the cloud

and offering a variety of services. It is possible to find integrated developed environments

based on 4GL and visual programming concepts, or rapid prototyping environments where

applications are built by assembling mash-ups and user-defined components and successively

customized. Other implementations of the PaaS model provide a complete object model for

representing an application and provide a programming language-based approach. This

approach generally offers more flexibility and opportunities but incurs longer development

cycles. Developers generally have the full power of programming languages such as Java,

.NET, Python, or Ruby, with some restrictions to provide better scalability and security. In

this case the traditional development environments can be used to design and develop

applications, which are then deployed on the cloud by using the APIs exposed by the PaaS

provider. Specific components can be offered together with the development libraries for

better exploiting the services offered by the PaaS environment. Sometimes a local runtime

environment that simulates the conditions of the cloud is given to users for testing their

applications before deployment. This environment can be restricted in terms of features, and

it is generally not optimized for scaling. PaaS solutions can offer middleware for developing

applications together with the infrastructure or simply provide users with the software that is

installed on the user premises. In the first case, the PaaS provider also owns large datacenters

where applications are executed; in the second case, referred to in this book as Pure PaaS, the

middleware constitutes the core value of the offering. It is also possible to have vendors that

deliver both middleware and infrastructure and ship only the middleware for private

installations.

Part 5

9. Explain Google File System.

Google File System is a proprietary distributed file system developed by Google to provide

efficient, reliable access to data using large clusters of commodity hardware. The last version of

Google File System code-named Colossus was released in 2010.

GFS is enhanced for Google's core data storage and usage needs (primarily the search engine),
which can generate enormous amounts of data that must be retained; Google File System grew
out of an earlier Google effort, "BigFiles", developed by Larry Page and Sergey Brin in the early
days of Google, while it was still located in Stanford. Files are divided into fixed-size chunks of
64 megabytes, similar to clusters or sectors in regular file systems, which are only extremely
rarely overwritten, or shrunk; files are usually appended to or read. It is also designed and

optimized to run on Google's computing clusters, dense nodes which consist of cheap
"commodity" computers, which means precautions must be taken against the high failure rate of
individual nodes and the subsequent data loss. Other design decisions select for high
data throughputs, even when it comes at the cost of latency.

A GFS cluster consists of multiple nodes. These nodes are divided into two types:
one Master node and multiple Chunkservers. Each file is divided into fixed-size chunks.
Chunkservers store these chunks. Each chunk is assigned a globally unique 64-bit label by the
master node at the time of creation, and logical mappings of files to constituent chunks are
maintained. Each chunk is replicated several times throughout the network. At default, it is
replicated three times, but this is configurable. Files which are in high demand may have a higher
replication factor, while files for which the application client uses strict storage optimizations may
be replicated less than three times - in order to cope with quick garbage cleaning policies.

The Master server does not usually store the actual chunks, but rather all
the metadata associated with the chunks, such as the tables mapping the 64-bit labels to chunk
locations and the files they make up (mapping from files to chunks), the locations of the copies of
the chunks, what processes are reading or writing to a particular chunk, or taking a "snapshot" of
the chunk pursuant to replicate it (usually at the instigation of the Master server, when, due to
node failures, the number of copies of a chunk has fallen beneath the set number). All this
metadata is kept current by the Master server periodically receiving updates from each chunk
server ("Heart-beat messages").

Permissions for modifications are handled by a system of time-limited, expiring "leases", where
the Master server grants permission to a process for a finite period of time during which no other
process will be granted permission by the Master server to modify the chunk. The modifying
chunkserver, which is always the primary chunk holder, then propagates the changes to the
chunkservers with the backup copies. The changes are not saved until all chunkservers
acknowledge, thus guaranteeing the completion and atomicity of the operation.

Programs access the chunks by first querying the Master server for the locations of the desired
chunks; if the chunks are not being operated on (i.e. no outstanding leases exist), the Master
replies with the locations, and the program then contacts and receives the data from the
chunkserver directly (similar to Kazaa and its supernodes).

Unlike most other file systems, GFS is not implemented in the kernel of an operating system, but
is instead provided as a userspace library.

10. Explain SQL Azure and Azure Table.

Microsoft Azure SQL Database is a managed cloud database (PaaS) provided as part
of Microsoft Azure.

A cloud database is a database that runs on a cloud computing platform, and access to it is
provided as a service. Managed database services take care of scalability, backup, and high
availability of the database. Azure SQL Database is a managed database service which is
different from AWS RDS which is a container service. Microsoft Azure SQL Database includes
built-in intelligence that learns app patterns and adapts to maximize performance, reliability,
and data protection. It was originally announced in 2009 and released in 2010.

Key capabilities include:

• Continuous learning of your unique app patterns, adaptive performance tuning, and
automatic improvements to reliability and data protection

• Scaling as needed, with virtually no app downtime

• Management and monitoring of multitenant apps with isolation benefits of one-
customer-per-database

• Leverage open-source tools like cheetah, sql-cli, VS Code and Microsoft tools
like Visual Studio and SQL Server Management Studio, Azure Management
Portal, PowerShell, and REST APIs

• Data protection with encryption, authentication, limiting user access to the
appropriate subset of the data, continuous monitoring and auditing to help detect
potential threats and provide a record of critical events in case of a breach

Azure Table storage is a service that stores non-relational structured data (also

known as structured NoSQL data) in the cloud, providing a key/attribute store with a

schemaless design. Because Table storage is schemaless, it's easy to adapt your data

as the needs of your application evolve. Access to Table storage data is fast and cost-

effective for many types of applications, and is typically lower in cost than traditional

SQL for similar volumes of data.

You can use Table storage to store flexible datasets like user data for web

applications, address books, device information, or other types of metadata your

service requires. You can store any number of entities in a table, and a storage

account may contain any number of tables, up to the capacity limit of the storage

account.

What is Table storage

Azure Table storage stores large amounts of structured data. The service is a NoSQL

datastore which accepts authenticated calls from inside and outside the Azure cloud.

Azure tables are ideal for storing structured, non-relational data. Common uses of

Table storage include:

• Storing TBs of structured data capable of serving web scale applications

• Storing datasets that don't require complex joins, foreign keys, or stored

procedures and can be denormalized for fast access

• Quickly querying data using a clustered index

• Accessing data using the OData protocol and LINQ queries with WCF

Data Service .NET Libraries

You can use Table storage to store and query huge sets of structured, non-relational

data, and your tables will scale as demand increases.

Table storage concepts

Table storage contains the following components:

• URL format: Azure Table Storage accounts use this

format: http://<storage account>.table.core.windows.net/<table>

Azure Cosmos DB Table API accounts use this format: http://<storage
account>.table.cosmosdb.azure.com/<table>

You can address Azure tables directly using this address with the OData

protocol.

• Accounts: All access to Azure Storage is done through a storage

account.

• Table: A table is a collection of entities. Tables don't enforce a schema

on entities, which means a single table can contain entities that have

different sets of properties.

• Entity: An entity is a set of properties, similar to a database row. An

entity in Azure Storage can be up to 1MB in size. An entity in Azure

Cosmos DB can be up to 2MB in size.

• Properties: A property is a name-value pair. Each entity can include up

to 252 properties to store data. Each entity also has three system

properties that specify a partition key, a row key, and a timestamp.

Entities with the same partition key can be queried more quickly, and

inserted/updated in atomic operations. An entity's row key is its unique

identifier within a partition.

