
1 | P a g e

ANSWER KEY

Internal Assessment Test 1 – Nov, 2021

Sub: Data Analytics using Python
Sub

Code:
20MCA31

Date: 11/11//2021 Duration:
90

min’s
Date: 11/11//2021 Duration:

90

min’s
Date: 11/11//2021

1. (a) Write the features of Python. Give the advantages & disadvantages of it. (5 Marks)

Features

 Object oriented language : . Python supports object-oriented language and concepts of classes,
objects encapsulation, etc.

 Interpreted language : Python code is executed line by line at a time.
 Supports dynamic data type : A variable is decided at run time not in advance. hence, we don’t

need to specify the type of variable. (for example- int, double, long, etc.)

 Simple and easy to code : Python is very easy code
 High-level Language

 Automatic memory management
 open source: Python language is freely available
advantages & disadvantages

advantages
 Free availability (like Perl, Python is open source).
 Stability (Python is in release 2.6 at this point and, as I noted earlier, is older than Java).

 Very easy to learn and use
 Good support for objects, modules, and other reusability mechanisms.

 Easy integration with and extensibility using C and Java.
disadvantages

 Smaller pool of Python developers compared to other languages, such as Java

 Lack of true multiprocessor support
 Absence of a commercial support point, even for an Open Source project (though this

situation is changing)
 Software performance slow, not suitable for high performance applications

(b) Write a Python function to sum of the numbers in a list (5 Marks)

def sum(numbers):
 total = 0
 for x in numbers:

 total += x
 return total

print(sum((8, 2, 3, 0, 7)))

2. Discuss the Looping Statements with an example. (10 Marks)

(i) while (ii) for (iii) range

The while loop in Python is used to iterate over a block of code as long as the test expression (condition) is

true.
We generally use this loop when we don't know the number of times to iterate beforehand.

2 | P a g e

Syntax of while Loop in Python

while test_expression:

 Body of while

In the while loop, test expression is checked first. The body of the loop is entered only if

the test_expression evaluates to True. After one iteration, the test expression is checked again. This process

continues until the test_expression evaluates to False.

In Python, the body of the while loop is determined through indentation.

The body starts with indentation and the first unindented line marks the end.

Python interprets any non-zero value as True. None and 0 are interpreted as False.

Flowchart of while Loop

Flowchart for while loop in Python
Example: Python while Loop

Program to add natural
numbers up to

sum = 1+2+3+...+n

To take input from the user,

n = int(input("Enter n: "))

n = 10

initialize sum and counter

sum = 0
i = 1

while i <= n:
 sum = sum + i

 i = i+1 # update counter

print the sum
print("The sum is", sum)

When you run the program, the output will be:

3 | P a g e

Enter n: 10
The sum is 55

In the above program, the test expression will be True as long as our counter variable i is less than or equal

to n (10 in our program).

We need to increase the value of the counter variable in the body of the loop. This is very important (and
mostly forgotten). Failing to do so will result in an infinite loop (never-ending loop).
Finally, the result is displayed.

While loop with else

Same as with for loops, while loops can also have an optional else block.

The else part is executed if the condition in the while loop evaluates to False.

The while loop can be terminated with a break statement. In such cases, the else part is ignored. Hence, a

while loop's else part runs if no break occurs and the condition is false.

Here is an example to illustrate this.

'''Example to illustrate

the use of else statement
with the while loop'''

counter = 0

while counter < 3:
 print("Inside loop")
 counter = counter + 1

else:
 print("Inside else")

Output

Inside loop
Inside loop

Inside loop
Inside else

Here, we use a counter variable to print the string Inside loop three times.

On the fourth iteration, the condition in while becomes False. Hence, the else part is executed.

What is for loop in Python?

The for loop in Python is used to iterate over a sequence (list, tuple, string) or other iterable objects. Iterating

over a sequence is called traversal.
Syntax of for Loop

for val in sequence:
 loop body

Here, val is the variable that takes the value of the item inside the sequence on each iteration.

Loop continues until we reach the last item in the sequence. The body of for loop is separated from the rest
of the code using indentation.

https://www.programiz.com/python-programming/for-loop
https://www.programiz.com/python-programming/break-continue
https://www.programiz.com/python-programming/list
https://www.programiz.com/python-programming/tuple
https://www.programiz.com/python-programming/string

4 | P a g e

Flowchart of for Loop

Flowchart of for Loop in Python

Example: Python for Loop

Program to find the sum of all numbers stored in a list

List of numbers
numbers = [6, 5, 3, 8, 4, 2, 5, 4, 11]

variable to store the sum

sum = 0

iterate over the list

for val in numbers:
 sum = sum+val

print("The sum is", sum)

When you run the program, the output will be:

The sum is 48

RANGE()

Range generates a list of integers and there are 3 ways to use it.

The function takes 1 to 3 arguments. Note I’ve wrapped each usage in list comprehension so we can see the
values generated.

i) range(end) : generate integers from 0 to the “end” integer.
[i for i in range(10)]
#=> [0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

ii) range(start, end) : generate integers from the “start” to the “end” integer.

[i for i in range(2,10)]
#=> [2, 3, 4, 5, 6, 7, 8, 9]

5 | P a g e

iii) range(start, end, step) : generate integers from “start” to “end” at intervals of “step”.

[i for i in range(2,10,2)]
#=> [2, 4, 6, 8]

3. (a) What is the difference between a list and a tuple? Give an example (5 Marks)

(b) What is the difference between a module and a package? (5 Marks)

Module

A module can contain executable statements as well as function definitions. These statements are
intended to initialize the module. They are executed only the first time the module name is

encountered in an import statement.

Items are imported using from or import.
Syntax :
 from module import function

 function()

 Example :

 from math import sqrt
 print sqrt(2.0)

Package

The collections of modules organized together and kept into a directory. That directory is known as

Package. That is , a package is a directory of modules.
Inside this directory there will be __init__.py file. This file is the one which will always be
recognized and run by the compiler. Packages are modules, but not all modules are packages.

Example

 From sklearn import cross_validation

6 | P a g e

4. (a) Evaluate the following expression (i) 5//3*2-6/3*5%3 (ii) 5%8 *3+8%3*5 ((5 Marks)

(i) 5//3*2-6/3*5%3

=1*2-6/3*5%3
 =2-6/3*5%3
 =2-2*5%3

 =2-10%3
 =2-1

 Ans=1

(ii) 5%8*3+8%3*5

 =5*3+8%3*5
 =15+8%3*5

 =15+2*5
 =15+10

Ans=25

(b) Write the following in Python (5 Marks)

(ii) a is greater than any one of x,y,z (ii) (logx+sin45)/xy

(i) (a>x) or (a>y) or (a>z)

(ii) math.log2 (x)+math.sin(45)/(x*y)

5. Explain in detail about python operators (10 Marks)

Python Operators in general are used to perform operations on values and variables. These are standard
symbols used for the purpose of logical and arithmetic operations. In this article, we will look into

different types of Python operators.
Arithmetic Operators

Arithmetic operators are used to performing mathematical operations like addition, subtraction,
multiplication, and division.

Operator Description Syntax

+ Addition: adds two operands x + y

– Subtraction: subtracts two operands x – y

* Multiplication: multiplies two operands x * y

/ Division (float): divides the first operand by the second x / y

// Division (floor): divides the first operand by the second x // y

% Modulus: returns the remainder when the first operand is divided by the second x % y

** Power: Returns first raised to power second x ** y

https://www.geeksforgeeks.org/python-arithmetic-operators/

7 | P a g e

Example: Arithmetic operators in Python

Examples of Arithmetic Operator

a = 9
b = 4

Addition of numbers
add = a + b

Subtraction of numbers

sub = a - b

Multiplication of number

mul = a * b

Division(float) of number
div1 = a / b

Division(floor) of number
div2 = a // b

Modulo of both number
mod = a % b

Power

p = a ** b

print results

print(add)
print(sub)

print(mul)
print(div1)
print(div2)

print(mod)
print(p)

Output
13
5

36
2.25

2
1
6561

Note: Refer to Differences between / and // for some interesting facts about these two operators.
Comparison Operators

Comparison of Relational operators compares the values. It either returns True or False according to the
condition.

Operator Description Syntax

> Greater than: True if the left operand is greater than the right x > y

https://www.geeksforgeeks.org/benefits-of-double-division-operator-over-single-division-operator-in-python/
https://www.geeksforgeeks.org/relational-operators-in-python/
https://www.geeksforgeeks.org/relational-operators-in-python/

8 | P a g e

Operator Description Syntax

< Less than: True if the left operand is less than the right x < y

== Equal to: True if both operands are equal x == y

!= Not equal to – True if operands are not equal x != y

>= Greater than or equal to True if the left operand is greater than or equal to the right x >= y

<= Less than or equal to True if the left operand is less than or equal to the right x <= y

Example: Comparison Operators in Python

Examples of Relational Operators
a = 13

b = 33

a > b is False

print(a > b)

a < b is True
print(a < b)

a == b is False
print(a == b)

a != b is True
print(a != b)

a >= b is False

print(a >= b)

a <= b is True

print(a <= b)

Output

False
True
False

True
False

True
Logical Operators

Logical operators perform Logical AND, Logical OR, and Logical NOT operations. It is used to

combine conditional statements.

Operator Description Syntax

and Logical AND: True if both the operands are true x and y

https://www.geeksforgeeks.org/python-logical-operators-with-examples-improvement-needed/

9 | P a g e

Operator Description Syntax

or Logical OR: True if either of the operands is true x or y

not Logical NOT: True if the operand is false not x

Example: Logical Operators in Python

Examples of Logical Operator
a = True
b = False

Print a and b is False

print(a and b)

Print a or b is True

print(a or b)

Print not a is False
print(not a)

Output

False
True

False
Bitwise Operators

Bitwise operators act on bits and perform the bit-by-bit operations. These are used to operate on binary

numbers.

Operator Description Syntax

& Bitwise AND x & y

| Bitwise OR x | y

~ Bitwise NOT ~x

^ Bitwise XOR x ^ y

>> Bitwise right shift x>>

<< Bitwise left shift x<<

Example: Bitwise Operators in Python

Examples of Bitwise operators

a = 10
b = 4

Print bitwise AND operation

https://www.geeksforgeeks.org/python-bitwise-operators/

10 | P a g e

print(a & b)

Print bitwise OR operation
print(a | b)

Print bitwise NOT operation
print(~a)

print bitwise XOR operation

print(a ^ b)

print bitwise right shift operation

print(a >> 2)

print bitwise left shift operation
print(a << 2)

Output

0
14

-11
14
2

40
Assignment Operators

Assignment operators are used to assigning values to the variables.

Operator Description Syntax

= Assign value of right side of expression to left side operand x = y + z

+=
Add AND: Add right-side operand with left side operand and then assign to
left operand a+=b a=a+b

-=
Subtract AND: Subtract right operand from left operand and then assign to
left operand a-=b a=a-b

*=

Multiply AND: Multiply right operand with left operand and then assign to

left operand a*=b a=a*b

/=

Divide AND: Divide left operand with right operand and then assign to left

operand a/=b a=a/b

%=
Modulus AND: Takes modulus using left and right operands and assign the
result to left operand a%=b a=a%b

//=
Divide(floor) AND: Divide left operand with right operand and then assign
the value(floor) to left operand a//=b a=a//b

https://www.geeksforgeeks.org/assignment-operators-in-python/

11 | P a g e

Operator Description Syntax

**=

Exponent AND: Calculate exponent(raise power) value using operands and

assign value to left operand

a**=b

a=a**b

&= Performs Bitwise AND on operands and assign value to left operand a&=b a=a&b

|= Performs Bitwise OR on operands and assign value to left operand a|=b a=a|b

^= Performs Bitwise xOR on operands and assign value to left operand a^=b a=a^b

>>= Performs Bitwise right shift on operands and assign value to left operand

a>>=b

a=a>>b

<<= Performs Bitwise left shift on operands and assign value to left operand

a <<= b a= a

<< b

Example: Assignment Operators in Python

Examples of Assignment Operators

a = 10

Assign value
b = a
print(b)

Add and assign value

b += a
print(b)

Subtract and assign value
b -= a

print(b)

multiply and assign

b *= a
print(b)

bitwise lishift operator
b <<= a

print(b)

Output

10
20
10

100
102400

Identity Operators

is and is not are the identity operators both are used to check if two values are located on the same part of
the memory. Two variables that are equal do not imply that they are identical.

https://www.geeksforgeeks.org/python-membership-identity-operators-not-not/

12 | P a g e

is True if the operands are identical

is not True if the operands are not identical
Example: Identity Operator

a = 10

b = 20
c = a

print(a is not b)
print(a is c)

Output
True

True
Membership Operators

in and not in are the membership operators; used to test whether a value or variable is in a sequence.

in True if value is found in the sequence
not in True if value is not found in the sequence

Example: Membership Operator

Python program to illustrate

not 'in' operator
x = 24

y = 20
list = [10, 20, 30, 40, 50]

if (x not in list):
print("x is NOT present in given list")

else:
print("x is present in given list")

if (y in list):
print("y is present in given list")

else:
print("y is NOT present in given list")

Output

x is NOT present in given list
y is present in given list

Precedence and Associativity of Operators

6. (a) Write python program to illustrate variable length keyword arguments (5 Marks)

*args and **kwargs are mostly used in function definitions. *args and **kwargs allow you to pass an

unspecified number of arguments to a function, so when writing the function definition, you do not
need to know how many arguments will be passed to your function. *args is used to send a non-

keyworded variable length argument list to the function. Here’s an example to help you get a clear

idea:
def test_var_args(f_arg, *argv):

 print("first normal arg:", f_arg)
 for arg in argv:
 print("another arg through *argv:", arg)

13 | P a g e

test_var_args('yasoob', 'python', 'eggs', 'test')

This produces the following result:
first normal arg: yasoob

another arg through *argv: python
another arg through *argv: eggs
another arg through *argv: test

I hope this cleared away any confusion that you had. So now let’s talk about **kwargs
1.2. Usage of **kwargs

**kwargs allows you to pass keyworded variable length of arguments to a function. You should use
**kwargs if you want to handle named arguments in a function. Here is an example to get you going with
it:

def greet_me(**kwargs):
 for key, value in kwargs.items():

 print("{0} = {1}".format(key, value))

>>> greet_me(name="yasoob")

name = yasoob
So you can see how we handled a keyworded argument list in our function. This is just the basics of

**kwargs and you can see how useful it is. Now let’s talk about how you can use *args and **kwargs to call
a function with a list or dictionary of arguments.
1.3. Using *args and **kwargs to call a function

So here we will see how to call a function using *args and **kwargs. Just consider that you have this little
function:

def test_args_kwargs(arg1, arg2, arg3):
 print("arg1:", arg1)
 print("arg2:", arg2)

 print("arg3:", arg3)
Now you can use *args or **kwargs to pass arguments to this little function. Here’s how to do it:

first with *args
>>> args = ("two", 3, 5)
>>> test_args_kwargs(*args)

arg1: two
arg2: 3

arg3: 5

now with **kwargs:

>>> kwargs = {"arg3": 3, "arg2": "two", "arg1": 5}
>>> test_args_kwargs(**kwargs)

arg1: 5
arg2: two
arg3: 3

Order of using *args **kwargs and formal args
So if you want to use all three of these in functions then the order is

some_func(fargs, *args, **kwargs)

(b) Write python program to perform linear search (5 Marks)

def search(arr, n, x):

 for i in range(0, n):

 if (arr[i] == x):
 return i

 return -1

14 | P a g e

Driver Code

arr = [10,50,30,70, 80, 60, 20, 90,40]
x = 20

n = len(arr)

Function call

result = search(arr, n, x)
if(result == -1):

 print("Element is not present in array")
else:
 print("Element is present at index", result)

7. Explain any 5 string functions with examples (10 Marks)

swapcase(...)
 | S.swapcase() -> string

 |
 | Return a copy of the string S with uppercase characters

 | converted to lowercase and vice versa

strip(...)

 | S.strip([chars]) -> string or unicode
 |

 | Return a copy of the string S with leading and trailing
 | whitespace removed.
 | If chars is given and not None, remove characters in chars instead.

| startswith(...)

 | S.startswith(prefix[, start[, end]]) -> bool
 |
 | Return True if S starts with the specified prefix, False otherwise.

 | With optional start, test S beginning at that position.
 | With optional end, stop comparing S at that position.

 | prefix can also be a tuple of strings to try.

| split(...)

 | S.split([sep [,maxsplit]]) -> list of strings
 |

 | Return a list of the words in the string S, using sep as the
 | delimiter string. If maxsplit is given, at most maxsplit
 | splits are done. If sep is not specified or is None, any

 | whitespace string is a separator and empty strings are removed
 | from the result.

 format(...)
 | S.format(*args, **kwargs) -> string

 |
 | Return a formatted version of S, using substitutions from args and kwargs.

 | The substitutions are identified by braces ('{' and '}').

8. (a) Write short note on slice operator (5 Marks)

15 | P a g e

Python slicing is about obtaining a sub-string from the given string by slicing it respectively from
start to end.

Python slicing can be done in two ways.
 slice() Constructor

 Extending Indexing

slice(stop)

slice(start, stop, step)
Parameters:

start: Starting index where the slicing of object starts.
stop: Ending index where the slicing of object stops.
step: It is an optional argument that determines the increment between each index for slicing.

Return Type: Returns a sliced object containing elements in the given range only.

slice() Constructor

The slice() constructor creates a slice object representing the set of indices specified by range(start,
stop, step).

A segment of a string is called a slice. Selecting a slice is similar to selecting a character:
>>> s = 'Monty Python'
>>> print s[0:5] Monty

>>> print s[6:13] Python
The operator [n:m] returns the part of the string from the “n-eth” character to the “m-eth” character, including

the first but excluding the last. This behavior is counterintuitive, but it might help to imagine the indices
pointing between the characters, as in the following diagram:

fruit ’ b a n a n a ’

index 0 1 2 3 4 5 6

If you omit the first index (before the colon), the slice starts at the beginning of the string. If you

omit the second index, the slice goes to the end of the string:
>>> frui t = 'bana na'
>>> fruit[:3] 'ban'

>>> fruit[3:] 'ana'

If the first index is greater than or equal to the second the result is an empty string, represented
by two quotation marks:

>>> frui t = 'bana na'
>>> fruit[3:3] ''

An empty string contains no characters and has length 0, but other than that, it is the same as any
other string.

Extending indexing

In Python, indexing syntax can be used as a substitute for the slice object. This is an easy and
convenient way to slice a string both syntax wise and execution wise.

Syntax

string[start:end:step]
start, end and step have the same mechanism as slice() constructor.

16 | P a g e

Example

String slicing
String ='ASTRING'

Using indexing sequence
print(String[:3])

print(String[1:5:2])
print(String[-1:-12:-2])

Prints string in reverse
print("\nReverse String")

print(String[::-1])

Output:
AST
SR

GITA

Reverse String
GNIRTSA

(b) nums = [10, 20, 30, 40, 50, 60, 70, 80, 90]

Write the output (i)nums[2:7] (ii) nums[:5] (iii) nums[-3:] (5 Marks)

(i) [30, 40, 50, 60, 70]
(ii) [10, 20, 30, 40, 50]

(iii) [70, 80, 90]

9. Write a python program using object oriented programming to demonstrate encapsulation,

overloading and inheritance (10 Marks)

class Base:
 def __init__(self):

 self.a = 10
 self._b = 20

 def display(self):
 print(" the values are :")

 print(f"a={self.a} b={self._b}")

class Derived(Base): # Creating a derived class

 def __init__(self):
 Base.__init__(self) # Calling constructor of Base class

 self.d = 30

 def display(self):

 Base.display(self)
 print(f"d={self.d}")

 def __add__(self, ob):
 return self.a + ob.a+self.d + ob.d

 #return self.a + ob.a+self.d + ob.d+self.b + ob.b

obj1 = Base()

17 | P a g e

obj2 = Derived()
obj3 = Derived()

obj2.display()

obj3.display()

print("\n Sum of two objects :",obj2 + obj3)

10. Write Python program to count words and store in dictionary for the given input text

Input Text : the clown ran after the car and the car ran into the tent and the tent fell down on

the clown and the car

Output : word count : {'and': 3, 'on': 1, 'ran': 2, 'car': 3, 'into': 1, 'after': 1, 'clown': 2,

'down': 1, 'fell': 1, 'the': 7, 'tent': 2}

Method 1

counts = dict()

line = input('Enter a line of text:')
words = line.split()

print('Words:', words)
print('Counting...’)

for word in words:
 counts[word] = counts.get(word,0) + 1

print('Counts', counts)

Method 2

def word_count(str):
 counts = dict()
 words = str.split()

 for word in words:
 if word in counts:

 counts[word] += 1
 else:
 counts[word] = 1

 return counts

#Driver Code
print(word_count(' the clown ran after the car and the car ran into the tent and the tent fell

down on the clown and the car’))

 Output:
