
CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 Answer Key – Nov. 2021

Sub: Programming Using C# .Net

Date: 11/11//2021 Duration: 90 min’s Max Marks: 50 Sem: V

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

PART I

MA

RKS

OBE

CO

RB

T
1 Explain the different components of .NET Framework 4.0

Components of .NET Framework 4.0:

The .NET Framework provides all the necessary components to develop and run an

application. The components of .NET Framework 4.0 architecture are as follows:

• Common Language Runtime (CLR) ADO.NET

• Common Type System (CTS) Windows Workflow Foundation

• Metadata and Assemblies Windows Presentation Foundatio

• .NET Framework class library Windows Communication Found

• Windows Forms Windows CardSpace

• ASP.NET and ASP.NET AJAX LINQ

Let’s now discuss about each of them in detail.

CLR[Common Language Runtime]:

“CLR is an Execution Engine for .NET Framework applications”.

CLR is a heart of the.NET Framework. It provides a run-time environment to run the

code and various services to develop the application easily.

The services provided by CLR are –

▪ Memory Management Thread execution Code s

▪ Exception Handling Code execution Verific

▪ Debugging Language Integration Compi

▪ Security

[10]

CO1

L1

The following figure shows the process of compilation and execution of the code by

the JIT Compiler:

i. After verifying, a JIT [Just-In-Time] compiler extracts the metadata from the

file to translate that verified IL code into CPU-specific code or native code.

These type of IL Code is called as managed code.

ii. The source code which is directly compiles to the machine code and runs on the

machine where it has been compiled such a code called as unmanaged code. It

does not have any services of CLR.

iii. Automatic garbage collection, exception handling, and memory management are

also the responsibility of the CLR.

Managed Code: Managed code is the code that is executed directly by the CLR. The

application that are created using managed code automatically have CLR services,

such as type checking, security, and automatic garbage collection.

The process of executing a piece of managed code is as follows:

▪ Selecting a language compiler

▪ Compiling the code to IL[This intermediate language is called managed code]

▪ Compiling IL to native code Executing the code

Unmanaged Code: Unmanaged Code directly compiles to the machine code and

runs on the machine where it has been compiled. It does not have services, such as

security or memory management, which are provided by the runtime. If your code is

not security-prone, it can be directly interpreted by any user, which can prove

harmful.

Automatic Memory Management: CLR calls various predefined functions of .NET

framework to allocate and de-allocate memory of .NET objects. So that, developers

need not to write code to explicitly allocate and de-allocate memory.

CTS [Common Type Specifications]:

The CTS defines the rules for declaring, using, and managing types at runtime. It is

an integral part of the runtime for supporting cross-language communication.

The common type system performs the following functions:

 Enables cross-language integration, type safety, and high-performance code
execution.

 Provides an object-oriented model for implementation of many programming

languages.

 Defines rules that every language must follow which runs under .NET

framework like C#, VB.NET, F# etc. can interact with each other.

The CTS can be classified into two data types, are

iv. Value Types

v. Reference Type

2 What is an Assembly? Explain each component in the assembly

An assembly is a file that is automatically generated by the compiler upon successful

compilation of every . NET application. It can be either a Dynamic Link Library or

an executable file. It is generated only once for an application and upon each

subsequent compilation the assembly gets updated

Assemblies can stored in two types:

Static assemblies: Static assemblies include interfaces, classes and resources.

These assemblies are stored in PE (Portable executable) files on a disk.

Dynamic assemblies: Dynamic assemblies run directly from the memory without

being saved to disk before execution. However, after execution you can save the

dynamic assemblies on the disk.

Global Assembly Cache:

The Global Assembly Cache (GAC) is a folder in Windows directory to store the

.NET assemblies that are specifically designated to be shared by all applications

executed on a system.

➢ The assemblies must be sharable by registering them in the GAC, only when

needed; otherwise, they must be kept private.

➢ Each assembly is accessed globally without any conflict by identifying its

name, version, architecture, culture and public key.

You can deploy an assembly in GAC by using any one of the following:

 An installer that is designed to work with the GAC

 The GAC tool known as Gacutil.exe

 The Windows Explorer to drag assemblies into the cache.

Strong Name Assembly:

A Strong Name contains the assembly’s identity, that is, the information about the

assembly’s name, version number, architecture, culture and public key.

 Using Microsoft Visual Studio .NET and other tools, you can provide a strong

name to an assembly.

 By providing strong names to the assembly, you can ensure that assembly is

globally unique.

Private and Shared Assembly:

A single application uses an assembly, then it is called as a private assembly.

Example: If you have created a DLL assembly containing information about your

business logic, then the DLL can be used by your client application only. Therefore,

to run the application, the DLL must be included in the same folder in which the

[10]

CO1

L1

3 With example explain in detail about the following categories of C# data types.

1.Value Type 2.Reference Type 3.Pointer Type

C# DataTypes

[10] CO1 L1

Types Data Types

Value Data Type short, int, char, float, doub

Reference Data Type String, Class, Object and Int

Pointer Data Type Pointers

client application has been installed. This makes the assembly private to your

application.

Assemblies that are placed in the Global Assembly cache so that they can be used by

multiple applications, then it is called as a shared assembly.

Example: Suppose the DLL needs to be reused in different applications. In this

scenario, instead of downloading a copy of the DLL to each and every client

application, the DLL can be placed in the global assembly cache by using the

Gacutil.exe tool, from where the application can be accessed by any client

application.

Side-by-Side Execution Assembly:

The process of executing multiple versions of an application or an assembly is

known as side-by-side execution. Support for side-by-side storage and execution of

different versions of the same assembly is an integral part of creating a strong name

for an assembly.

 Strong naming of .NET assembly is used to provide unique assembly identity

by using the sn.exe command utility.

 The strong-named assembly’s version number is a part of its identity, the

runtime can store multiple versions of the same assembly in the GAC.

 Load these assemblies at runtime.

l

e

Value Data Type

The value data types are integer-based and floating-point based. C# language supports

both signed and unsigned literals.

There are 2 types of value data type in C# language.

1) Predefined Data Types - such as Integer, Boolean, Float, etc.

2) User defined Data Types - such as Structure, Enumerations, etc.

The memory size of data types may change according to 32 or
64 bit operating system.

Let's see the value data types. It size is given according to 32 bit OS.

Data Types Memory Size Range

char 2 byte -128 to 127

signed

char

2 byte -128 to 127

unsigned

char

2 byte 0 to 127

short 2 byte -32,768 to 32,767

signed

short

2 byte -32,768 to 32,767

unsigned

short

2 byte 0 to 65,535

int 4 byte -2,147,483,648 to -2,147,483,64

signed int 4 byte -2,147,483,648 to -2,147,483,64

unsigned

int

4 byte 0 to 4,294,967,295

long 8 byte ?9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

signed

long

8 byte ?9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

unsigned

long

8 byte 0 - 18,446,744,073,709,551,615

float 4 byte 1.5 * 10-45 - 3.4 * 1038, 7-dig

double 8 byte 5.0 * 10-324 - 1.7 * 10308, 15-

precision

decimal 16

byte

at least -7.9 * 10?28 - 7.9 * 1 least 28-digit

precision

Reference Data Type

The reference data types do not contain the actual data stored in a variable, but they

contain a reference to the variables. In other words they refer to the memory location.

If the data is changed by one of the variables, the other variable automatically

reflects this change in value.

There are 2 types of reference data type in C# language.

1) Predefined Types - such as Objects, String.

2) User defined Types - such as Classes, Interface.

Object Type: The Object Type is the ultimate base class for all data types in C#

Common Type System (CTS). Object is an alias for System.Object class. The object

types can

be assigned values of any other types, value types, reference types, predefined or

user-defined types. However, before assigning values, it needs type conversion.

When a value type is converted to object type, it is called boxing and on the other

hand, when an object type is converted to a value type, it is called unboxing.

Object ob1;
ob1 = 100; // This is boxing

Dynamic Type : You can store any type of value in the dynamic data type variable.

Type checking for these types of variables takes place at run-time.

dynamic variablename = value; dynamic d

= 10;

Dynamic types are similar to object types except that type checking for object type

variables takes place at compile time, whereas that for the dynamic type variables takes

place at run time.

Pointer Data Type

The pointer in C# language is a variable, it is also known as locator or indicator that
points to an address of a value.

Symbols used in pointer

Symbol Name Description

& (ampersand

sign)

Address operator Determine the a

variable.

* (asterisk Indirection

Access the val

sign) operator address.

Example:

int *a; char

*b;

4 Define Type Casting and its forms.

Type conversion is converting one type of data to another type. It is also known as

Type Casting. In C#, type casting has two forms −

• Implicit type conversion − These conversions are performed by C# in a type-

safe manner. For example, are conversions from smaller to larger integral types

and conversions from derived classes to base classes.

• Explicit type conversion − These conversions are done explicitly by users

using the pre-defined functions. Explicit conversions require a cast operator.

[10] CO1 L2

Sr.No. Methods &

Description

1

ToBoolean

Converts a type to a Boolean value, where possible.

2

ToByte

Converts a type to a byte.

3

ToChar

Converts a type to a single Unicode character, where possible.

4

ToDateTime

Converts a type (integer or string type) to date-time structures.

5

ToDecimal

Converts a floating point or integer type to a decimal type.

6

ToDouble

 Converts a type to a double type.

7

ToInt16

Converts a type to a 16-bit integer.

8

ToInt32

Converts a type to a 32-bit integer.

9

ToInt64

Converts a type to a 64-bit integer.

10

ToSbyte

Converts a type to a signed byte type.

11

ToSingle

Converts a type to a small floating point number.

12

ToString

Converts a type to a string.

13

ToType

Converts a type to a specified type.

14

ToUInt16

Converts a type to an unsigned int type.

15

ToUInt32

Converts a type to an unsigned long type.

16

ToUInt64

Converts a type to an unsigned big integer.

5

Discuss the following with proper example:

1. Creating a class

A class declaration in C# is composed of attributes, modifiers, the class name, base class

and interfaces, and a body. Attributes, modifiers, and bases are all optional. The body of

[10]

CO1

L2

the class contains class members that can include constants, fields (or variables),

methods, properties, indexers, events, operators, and nested types. Nested types are

defined by class, interface, delegate, struct, or enum declarations within the class body.

Syntax:

class <Class_name> {

<access_modifier> [static] variable_type fields, constants

<access_modifier> [static] return_type methodName(args..){ - - - - }

... constructors, destructors ...

... properties ...// for component-based programming

... events ...

... indexers ... // for convenience

... overloaded operators ...

... nested types (classes, interfaces, structs, enums, delegates)

}

2. Creating an Object

In C#, objects help you to access the members of a class – fields, methods and properties

by using the dot ()

operator.

 An object is a given instance of a particular class in memory.

In C#, the new keyword is the way to create an object.

Syntax:

<ClassName> <ObjectName> = new <ClassName>();

3. Using this keyword

The “this” keyword refers to the current instance of a class. With the “this” keyword,

you can access an instance

of a class and use it with instance methods, instance constructors, and instance

properties.

Syntax: Note:

 To access the instance members of a class, use dot() operator

this.members;

Cannot be used with static members because static members are

accessed by a class and not by the instance of the class.

Example:

class Student{

string name, sid;

int marks;

public Student(string name, string sid, int marks){

this.name = name;

this.sid = sid;

this.marks = marks;

}

//If the user calls this ctor, forward to the 3-arg version.

//public Student() : this("Kalpana","MCA01",95) { }

public Student() {

name = "Kalpana";

sid = "MCA01";

marks = 95;

}

public void displayData(){

Console.WriteLine("Name: {0}\nID: {1}\nMarks:{2}", name,

sid, marks);

}

}

class thisdemo {

static void Main(string[] args){

Student st1 = new Student();

Console.WriteLine("Student Details:");

st1.displayData();

Student st2 = new Student("Tanuja", "MCA02", 85);

st2.displayData();

Console.ReadLine();

} } }

6 Discuss the following with proper example:

1. Creating an Array of objects

Creating an Array of Objects:

To create an array of objects in C#, follow the below steps:

 Create an array

 Then create the individual elements of the array.

Syntax:

<ClassName>[] ObjectName = new <ClassName>[size];

Example: Employee[] manager = new Employee[size];

Note: you cannot create an array and its individual elements simultaneously.

2. Nested classes

A Nested class is a class that is defined inside another class. This class acts as the member

of the parent class

in which it is defined.

Advantage: Accessing all the members of its outer class.

Example:

using System;

namespace Class_Demos {

class OuterClass {

int i;

public OuterClass() { i = 10; }

public void OutDisplay() {

Console.WriteLine("This is Outer Class");

}

public class InnerClass {

public void InDisplay(OuterClass o){

Console.WriteLine("This is Inner Class");

Console.WriteLine("i value is:" +o.i);

}

}

[10] CO1 L2

}

class NestedClEx{

public static void Main(){

//Creating instance to outer class

OuterClass ob1 = new OuterClass();

ob1.OutDisplay();

//Creating instance to inner class

OuterClass.InnerClass iob = new OuterClass.InnerClass();

iob.InDisplay(ob1);

Console.Read();

} } }

3. Partial classes and methods

The partial class is a class that enables you to specify the definition of a class, structure,

or interface in two or more source files. All the source files, each containing a section of

class definition, combine when the application is complete. You may need a partial class

when developers are working on large projects. A partial class distributes a class over

multiple separate files; allowing developers to work on the class simultaneously. You can

declare a class as partial by using the “partial” keyword. All the divided sections of the

partial class must be available to form the final class when you compile the

program. Let’s see that in above figure. All the section must have the same accessibility

modifiers, such as public or private.

Syntax:

public partial class student{

public void avgmarks() { }

}

public partial class student{

public void avgmarks() { }

}

Partial method are only allowed in partial types, such as classes and structs. A partial

method consists of 2

parts that listed below:

 Deals with defining the partial method

 Deals with implementing the partial method

declaration

Rules:

Must have a void return type

No access modifier are allowed for declaring a partial

method except for static

Partial methods are private by default.

Example:

using System;

namespace Class_Demos{

partial class MyTest {

private int a;

private int b;

public void getAnswer(int a1, int b1){

a = a1;

b = b1;

}

static partial void Message();

}

partial class MyTest{

partial void Message(){

Console.WriteLine("Successfully accessed. ");

}

public void DisplayAns(){

Console.WriteLine("Integer values: {0}, {1}", a, b);

Console.WriteLine("Addition:{0}", a + b);

Console.WriteLine("Multiply:{0}", a * b);

Message();

}

}

class PartialEx{

public static void Main(){

MyTest ts = new MyTest();

ts.getAnswer(2, 3);

ts.DisplayAns();

Console.Read();

}}}

7
Write a c# program to print factorial of a number

using System;

public class FactorialExample

{ public static void Main(string[] args)

{

int i,fact=1,number;

Console.Write("Enter any Number:

"); number=

int.Parse(Console.ReadLine());

for(i=1;i<=number;i++){

fact=fact*i;

}

Console.Write("Factorial of " +number+" is: "+fact);

}
}

[10]
CO5 L4

8. Explain about arrays and its types & Write a c# program for jagged array .

A jagged array is an array whose elements are arrays. The elements of a jagged array
can be of different dimensions and sizes. A jagged array is sometimes called an "array
of arrays."

The following is a declaration of a single-dimensional array that has three elements,
each of which is a single-dimensional array of integers:

int[][] jaggedArray = new int[3][];
Before using jaggedArray, its elements must be initialized.
jaggedArray[0] = new int[5];
jaggedArray[1] = new int[4];
jaggedArray[2] = new int[2];
Each of the elements is a single-dimensional array of integers. The first element is an
array of 5 integers, the second is an array of 4 integers, and the third is an array of 2
integers.

Example:

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;

namespace Program4
{
 class Program
 {
 static void Main(string[] args)
 {
 int[][] arr = new int[3][];
 int arr0_length, arr1_length, arr2_length;
 int i,j, sum;

 Console.WriteLine ("Enter the length of the first array : ");
 arr0_length =Convert.ToInt32(Console.ReadLine());
 arr[0] = new int[arr0_length];
 Console.WriteLine ("Enter the Element of First array : ");
 for (i = 0; i < arr0_length; i++)
 arr[0][i] = Convert.ToInt32(Console.ReadLine());

 Console.WriteLine ("Enter the length of the second array : ");
 arr1_length =Convert.ToInt32(Console.ReadLine());
 arr[1] = new int[arr1_length];
 Console.WriteLine ("Enter the Element of Second array : ");
 for(i=0;i<arr1_length;i++)
 arr[1][i]=Convert.ToInt32(Console.ReadLine());

 Console.WriteLine ("Enter the length of the Third array : ");
 arr2_length =Convert.ToInt32(Console.ReadLine());
 arr[2] = new int[arr2_length];

[10] CO5 L3

 Console.WriteLine ("Enter the Element of Third array : ");
 for(i=0;i<arr2_length;i++)
 arr[2][i]=Convert.ToInt32(Console.ReadLine());

 Console.WriteLine("Array with its length :");
 for (i = 0; i < 3; i++)
 {
 sum = 0;
 Console.WriteLine("Elements of Array " + i + "and its Sum ");
 Console.WriteLine();
 for (j = 0; j< arr[i].Length; j++)
 {
 Console.Write(arr[i][j] + " ");
 sum = sum + arr[i][j];
 }
 Console.WriteLine(" Sum : "+sum);
 Console.WriteLine();
 }
 Console.ReadLine();
 }
 }
}

9. Define operator overloading. Write an example C# program for unary and binary

operator overloading

All unary and binary operators have pre-defined implementations, that are
automatically available in any expressions. In addition to this pre-defined
implementations, user defined implementations can also be introduced in C#. The
mechanism of giving a special meaning to a standard C# operator with respect to a user
defined data type such as classes or structures is known as operator overloading.
Example:

class Prg3

{

 class Complex

 {

 private int x, y;

 public Complex() { }

 public Complex(int i, int j)

 {

 x = i;

 y = j;

 }

 public void ShowXY()

 {

 Console.WriteLine(Convert.ToString(x) + " " + Convert.ToString(y));

 }

 public static Complex operator -(Complex c)

 {

 Complex temp = new Complex();

[10]

CO5

L4

 temp.x = -c.x;

 temp.y = -c.y;

 return temp;

 }

 public static Complex operator +(Complex c1, Complex c2)

 {

 Complex temp = new Complex();

 temp.x = c1.x + c2.x;

 temp.y = c1.y + c2.y;

 return temp;

 }

 }

 static void Main(string[] args)

 {

 Complex c1 = new Complex(10, 20);

 Complex c2 = new Complex(30, 40);

 Complex c3, c4 = new Complex();

 Console.Write("Complex Number1 :");

 c1.ShowXY();

 Console.Write ("Complex Number2 :");

 c2.ShowXY();

 c3 = -c1;

 Console.Write("Changing the sign of Complex Number1 :");

 c3.ShowXY();

 c4 = c1 + c2;

 Console.Write("Addition of two complex Numbers 1 and 2:");

 c4.ShowXY();

 Console.ReadLine();

 }

 }

10 Illustrate with an example about function overloading in C#

Method Overloading is the common way of implementing polymorphism. It is the

ability to redefine a function in more than one form. A user can implement function

overloading by defining two or more functions in a class sharing the same name. C#

can distinguish the methods with different method signatures. i.e. the methods can

have the same name but with different parameters list (i.e. the number of the

parameters, order of the parameters, and data types of the parameters) within the same

class.

• Overloaded methods are differentiated based on the number and type of the

parameters passed as arguments to the methods.

• You can not define more than one method with the same name, Order and the type

of the arguments. It would be compiler error.

• The compiler does not consider the return type while differentiating the overloaded

method. But you cannot declare two methods with the same signature and different

return type. It will throw a compile-time error. If both methods have the same

parameter types, but different return type, then it is not possible.

•

Example:

[10]

CO5

L4

using System;

class GFG {

 // adding two integer values.

 public int Add(int a, int b)

 {

 int sum = a + b;

 return sum;

 }

 // adding three integer values.

 public int Add(int a, int b, int c)

 {

 int sum = a + b + c;

 return sum;

 }

 // Main Method

 public static void Main(String[] args)

 {

 // Creating Object

 GFG ob = new GFG();

 int sum1 = ob.Add(1, 2);

 Console.WriteLine("sum of the two "

 + "integer value : " + sum1);

 int sum2 = ob.Add(1, 2, 3);

 Console.WriteLine("sum of the three "

 + "integer value : " + sum2);

 }

}

