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Well-Posed Learning Definition: A computer program is said to learn from experience E with respect 

to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, 

improves with experience E. 

Examples: 

Checkers Game: A computer program that learns to play checkers might improve its performance as 

measured by its ability to win at the class of tasks involving playing checkers game, through experience 

obtained by playing games against itself. 
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2b) checkers learning problem:  
 Task T: playing checkers  
 Performance measure P: percent of games won against opponents  
 Training experience E: playing practice games against itself 

A handwriting recognition learning problem:  
 Task T: recognizing and classifying handwritten words within images  
 Performance measure P: percent of words correctly classified 

 
 Training experience E: a database of handwritten words with given classifications  

A robot driving learning problem:  
 Task T: driving on public four-lane highways using vision sensors 

 
 Performance measure P: average distance travelled before an error (as judged by human 

overseer) 
 

 Training experience E: a sequence of images and steering commands recorded while 

observing a human driver 
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2) DESIGNING A LEARNING SYSTEM 

The basic design issues and approaches to machine learning are illustrated by designing a 

program to learn to play checkers, with the goal of entering it in the world checkers tournament  
1. Choosing the Training Experience  
2. Choosing the Target Function   
3. Choosing a Function Approximation Algorithm  

1. Estimating training values  
2. Adjusting the weights 
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1. Choosing the Training Experience 
 

 The first design choice is to choose the type of training experience from which the 

system will learn. 
 

 The type of training experience available can have a significant impact on success or 

failure of the learner. 

There are three attributes which impact on success or failure of the learner 
 

1. Whether the training experience provides direct or indirect feedback regarding the choices 

made by the performance system. 

For example, in checkers game: 
 

In learning to play checkers, the system might learn from direct training examples consisting 

of individual checkers board states and the correct move for each. 

Indirect training examples consisting of the move sequences and final outcomes of various 

games played. The information about the correctness of specific moves early in the game must 

be inferred indirectly from the fact that the game was eventually won or lost. 

Here the learner faces an additional problem of credit assignment, or determining the degree 

to which each move in the sequence deserves credit or blame for the final outcome.  

2. The degree to which the learner controls the sequence of training examples 

For example, in checkers game: 
 

The learner might depends on the teacher to select informative board states and to provide the 

correct move for each. 

Alternatively, the learner might itself propose board states that it finds particularly confusing 

and ask the teacher for the correct move. 

The learner may have complete control over both the board states and (indirect) training 

classifications, as it does when it learns by playing against itself with no teacher present. 

2. Choosing the Target Function 

The next design choice is to determine exactly what type of knowledge will be learned and how this 

will be used by the performance program. 

Let’s consider a checkers-playing program that can generate the legal moves from any board state. 
 
The program needs only to learn how to choose the best move from among these legal moves. We must 

learn to choose among the legal moves, the most obvious choice for the type of information to be 

learned is a program, or function, that chooses the best move for any given board state. 

1. Let ChooseMove be the target function and the notation  is 

ChooseMove : B→ M  
which indicate that this function accepts as input any board from the set of legal board states B 

and produces as output some move from the set of legal moves M. 

ChooseMove is a choice for the target function in checkers example, but this function will 

turn out to be very difficult to learn given the kind of indirect training experience available to 

our system 

2. An alternative target function is an evaluation function that assigns a numerical score to any 

given board state  
Let the target function V and the notation  

V:B →R 

which denote that V maps any legal board state from the set B to some real value. Intend for 

this target function V to assign higher scores to better board states. If the system can 

successfully learn such a target function V, then it can easily use it to select the best move 

from any current board position. 

 



Let us define the target value V(b) for an arbitrary board state b in B, as follows:  
 If b is a final board state that is won, then V(b) = 100  
 If b is a final board state that is lost, then V(b) = -100  
 If b is a final board state that is drawn, then V(b) = 0  
 If b is a not a final state in the game, then V(b) = V(b' ), 

 
 

Where b' is the best final board state that can be achieved starting from b and playing optimally until 

the end of the game 

 

3. Choosing a Function Approximation Algorithm 

In order to learn the target function f we require a set of training examples, each describing a specific 

board state b and the training value Vtrain(b) for b. 

Each training example is an ordered pair of the form (b, Vtrain(b)). 

For instance, the following training example describes a board state b in which black has won the game 

(note x2 = 0 indicates that red has no remaining pieces) and for which the target function value 

Vtrain(b) is therefore +100. 

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100) 

Function Approximation Procedure 

1. Derive training examples from the indirect training experience available to the learner  
2. Adjusts the weights wi to best fit these training examples 

1. Estimating training values 

A simple approach for estimating training values for intermediate board states is to assign the

 training value  of Vtrain(b) for any  intermediate board state b to be  V(Successor(b)) 

Where , 
 ̂ 

V is the learner's current approximation to V 
 

 Successor(b) denotes the next board state following b for which it is again the 

program's turn to move 

Rule for estimating training values 
Vtrain(b) ← V (Successor(b)) 

 
        Final Design: 

 
3) FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS 

 

 

FIND-S Algorithm 

1. Initialize h to the most specific hypothesis in H  
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2. For each positive training instance x 
 

For each attribute constraint ai in h 
 

If the constraint ai is satisfied by x 
 

Then do nothing 
 

Else replace ai in h by the next more general constraint that is satisfied by x 3. Output 

hypothesis h 

Unanswered by FIND-S 

1. Has the learner converged to the correct target concept?  
2. Why prefer the most specific hypothesis?  
3. Are the training examples consistent?  
4. What if there are several maximally specific consistent hypotheses? 

 

4) List-Then-Eliminate algorithm 

1. VersionSpace ¬ a list containing every hypothesis in H 

2. For each training example, <x,c(x)>,  Remove from VersionSpace any hypothesis h that is 

inconsistent ie. for which  h(x) ¹ c(x) 

3. Output the list of hypotheses in VersionSpace after checking all the training examples. 

 

 

 
 

 
 

   

7) CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of all 

hypotheses in H; 

Initializing the G boundary set to contain the most general hypothesis in H G0  

Initializing the S boundary set to contain the most specific (least general) hypothesis S0  
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 When the second training example is observed, it has a similar effect of generalizing S further 

to S2, leaving G again unchanged i.e., G2 = G1 = G0 

 

 

Consider the third training example. 

 
 

Consider the fourth training example 

 
 

After processing these four examples, the boundary sets S4 and G4 delimit the version space of all 



hypotheses consistent with the set of incrementally observed training examples. 

 
8) A Unbiased Hypothesis: (Includes all training examples) 

 In enjoysport learning task the size of the instance space X of days described by the six attributes is 96 

instances, which is 296 target values. 

 But practically it is impossible to cover all the training examples. 

 A Biased Hypothesis: (not all training examples are considered) 

 If the candidate elimination algorithm is applied, then it ends up with empty version space. 

 In that case the hypothesis is overly general and incorrectly covers the training example. 

 So, the learner will generalize beyond the observed training examples to infer new examples.  

      x > y 

 Here, y is inductively inferred from x where, 

 X is a predefined example. 

  

 The learning algorithm is represented as, 

      L(xi, Dc) 

 Where,  

  xi  is a new instance 

 Dc the training data, Dc = {áx, c(x)ñ} 

 Therefore, the equation for Inductive Bias is given as,  

 Inductive inference ( ≻ ) 

 Dc Ù xi≻L(xi, Dc) 
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5) Decision tree learning is a method for approximating discrete-valued target functions, in which the 

learned function is represented by a decision tree. 
 
DECISION TREE REPRESENTATION 

 Decision trees classify instances by sorting them down the tree from the root to some leaf node, 

which provides the classification of the instance. 
 

 Each node in the tree specifies a test of some attribute of the instance, and  

each branch descending from that node corresponds to one of the possible values for this 

attribute. 
 

 An instance is classified by starting at the root node of the tree, testing the attribute specified by 

this node, then moving down the tree branch corresponding to the value of the attribute in the 

given example. This process is then repeated for the subtree rooted at the new node. 
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FIGURE: A decision tree for the concept PlayTennis. An example is classified by sorting it through the 
tree to the appropriate leaf node, then returning the classification associated with this leaf. 

Example:- 

Let’s say we have a sample of 50 students with three variables Gender (Boy/ Girl), Class( X/ XI) and 

Height (5 to 6 ft). 20 out of these 50 play cricket in rest time. Suppose you want to find on unknown 

dataset which contains all the features(Gender, class, height) that he/she will play or not in rest time. 

This is where decision tree supports, it will separate the students based on all values of three variable and 

identify the variable, which creates the best uniform sets of students  

 

 

9) 

 

Step 1: 

Total – 14 Yes(p) -  9 No(n) – 5 

Attributes: Outlook ={Sunny, Overcast, Rain}        Temperature = {Hot, Mild, 

Cool} 

       Humidity = {High, Normal}       Wind ={Weak, Strong} 

Step 2: Calculate the entropy of the dataset 

Entropy(S) = - p+ log2 p+ -   p-  log2 p- 

                                                =- - 
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
)  -     

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
) 

            =- (9/(9+5)) log(9/(9+5)) –(5/(9+5)) log(5/(9+5)) 

            =-(9/14) log(9/14) – (5/14) log(5/14) 

  = (-0.643)(-0.637) – (0.357)(-1.486) 

  =0.940 

Step 3: 

i) Select Outlook attribute 

Outlook ={Sunny, Overcast, Rain} 

Sunny   :  Yes(p)-    2      No(n)- 3 

Overcast: Yes(p)- 4      No(n)- 0 

Rain: Yes(p)- 3     No(n)- 2 

 

a) Entropy of Outlook attribute 

                                            =- - 
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
)  -     

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
) 

          Entropy(Outlook = Sunny) = -(2/5)log(2/5) – (3/5)log(3/5) 

      = -(0.4)(-1.322) – (0.6)(-0.737) =0.971 

       Entropy(Outlook = Overcast) = -(4/4)log(4/4) – 0 = 0 
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    Entropy(Outlook = Rain) = -(3/5)log(3/5) – (2/5)log(2/5) 

      =-(0.6)(-0.737) – (0.4)(-1.322) = 0.971 

 

b) Average Information Entropy(I) 

 

I(Outlook) = ((2+3)/(9+5))*0.971 + ((3+2)/(9+5))*0.971 + 0 

        = (5/14)*0.971 + 0.3571*0.971  

       = 0.693 

 

c) Information Gain(Outlook) = Entropy(S) –I(Outlook) 

   = 0.940 - 0.940  = 0.247 

ii) Select Temperature attribute 

Temperature = {Hot, Mild, Cool} 

Hot : p=2      n= 2 

Mild: p=4      n=2 

Cool: p=3      n=1 

 

a. Calculate the entropy for Temperature 

                                            =- - 
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
)  -     

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
) 

Entropy(Temperature= Hot)= -(2/4)log(2/4) – (2/4)log(2/4) 

           = -(0.5)(-1) – (0.5)(-1)    

          = 1 

Entropy(Temperature = Mild) = -(4/6)log(4/6) – (2/6)log(2/6) 

               = -(0.66)(-0.599) – (0.33)(-1.599) 

     = 0.923 

Entropy(Temperature = Cool)   = -(3/4)log(3/4) – (1/4)log(1/4) 

                  = -(0.75)(-0.415) – (0.25)(-2) 

     = 0.811 

 

b. Average Information Entropy(I) 

I(Temperature) = (4/14)*1 + (6/14)* 0.923 + (4/14)* 0.811  = 0.913 

c. Information Gain(Temperature) 

        IG(Temperature) = Entropy(S) – I(Temperature) 

                = 0.940 - 0.913 

             = 0.027 

iii) Select Humidity attribute 

   Humidity = {High, Normal} 

   High:  p: 3      n:4 

   Normal:  p: 6      n: 1 

a. Calculate the entropy for Temperature 

                                          =- - 
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
)  -     

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
) 

Entropy(Humidity = High) = - (3/7)log(3/7) – (4/7)log(4/7) 

          = -(0.4286)(-1.2223) – (0.5714)(-0.8074) 

          = 0.985 

Entropy(Humidity = Normal) = -(6/7)log(6/7) – (1/7)log(1/7) 

    = -(0.8571)(-0.2225)-(0.1429)(-2.8069) = 0.591 

b. Average Information Entropy 

c. Average Information Entropy(I) 

I(Humidity) = (7/14)*0.985 + (7/14)*0.591 

         = 0.788 



d. Information Gain(Humidity) 

IG(Humidity) = Entropy(S) – I(Humidity) 

  = 0.940 – 0.788 

  = 0.152 

iv) Select Windy attribute 

   Wind ={Weak, Strong} 

Weak: p:6     n:2 

Strong: p:3     n:3 

 

a. Calculate the entropy for Windy 

                                     =- - 
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
)  -     

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
) 

 

Entropy(Windy = Weak) = -(6/8)log(6/8) – (2/8)log(2/8) 

       = 0.811 

Entropy(Windy = Strong) = -(3/6)log (3/6) – (3/6)log(3/6) 

         = 1 

b. Average Information Entropy(I) 

I(Windy) = (8/14)* 0.811 + (6/14)*1 

    = 0.892 

c. Information Gain(Windy) 

 

IG(Windy) = Entropy(S) – I(Windy) 

        = 0.940 – 0.892 = 0.048 

 

IG(Outlook) = 0.247 

IG(Temperature) = 0.27 

IG(Humidity) = 0.152 

IG(Windy) = 0.048 

 

Highest Information Gain is 0.247 -> Outlook 

 

P:2 N:3  Total:5 

Temperature= {hot, cool, mild} 

Hot:p:0    n:2 

Cool: p:1    n:0 

Mild: p:1    n:1 

 

Humidity={High, Normal} 

High:      p:0    n:3 

Normal:p:2    n:0 

 

Windy:{Weak, Strong} 

Weak:  p:1   n:2 

Strong: p:1   n:1 

1. Calculate the entropy of Dataset(S) 

 

=- - 
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
)  -     

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
) 

 

Entropy = -(2/5)log(2/5) – (3/5)log(3/5)   = 0.971 

2. Calculate the Information Gain 

a. Calculate entropy of humidity 

Entropy(Humidity = High) = 0 – (3/3)log(3/3) = 0 



Entropy(Humidity = Normal) = 0 

b. Calculate Average information entropy(I) of humidity 

I(Humidity) = 0 

 

c. Information gain of humidity 

IG(Humidity) = Entropy(S) – I(Humidity) 

                         =0.971 – 0 = 0.971 

 

d. Calculate entropy of Windy 

 

Windy:{Weak, Strong} 

Weak:  p:1   n:2 

Strong: p:1   n:1 

 

=- - 
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
)  -     

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
) 

 

Entropy(Windy = Weak) =  -(1/3)log(1/3) – (2/3)log(2/3) = 0.918 

Entropy(wind = Strong) = -(1/2)log(1/2) – (1/2) log(1/2) =1 

e. Calculate Average information entropy of windy 

 

I(Windy) = (3/5) *0.918 + (2/5)*1 = 0.951 

 

 

f. Information gain of windy 

IG(Windy) = Entropy(S)  - I(Windy) 

                   = 0.971- 0.951  = 0.020 

 

g. Calculate entropy of temperature 

 

Temperature= {hot, cool, mild} 

Hot:p:0    n:2 

Cool: p:1    n:0 

Mild: p:1    n:1 

 

=- - 
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
)  -     

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
) 

 

Entropy (Temperature = hot) = 0 

Entropy(Temperature = Cool) = 0 

Entropy(Temperature = mild) = -(1/2)log(1/2) – (1/2)log(1/2) = 1 

h. Calculate Average information entropy of temperature 

I(temperature) = (2/5) * 0 + (1/5)*0 + (2/5)*1= 0.4 

i. Information gain of temperature 

IG(Temperature) =0.971 - 0.4 = 0.571 

 

 

3. Select the attribute with highest information gain 

 

IG(Temperature) =0.971 - 0.4 = 0.571 

IG(Windy) = 0.020  

IG(Humidity) = 0.971 

 Total = 5 

 P=3 

 N= 2 



1. Calculate the entropy of the dataset(S) 
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
)  -     

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
) 

 

Entropy = - (3/5)log(3/5) – (2/5)log(2/5)  = 0.971 

2. Calculate the information gain  

a. Calculate entropy of temperature 

Temperature ={mild, cool} 

Mild:p:2    n:1 

Cool:p:1    n:1 

Entropy(temperature = mild) = -(2/3)log(2/3) – (1/3)log(1/3) = 0.918 

Entropy(temperature = cool) =-(1/2)log(1/2) – (1/2)log(1/2) = 1 

b. Calculate average information entropy of temperature 

I(Temperature) = 0.951 

c. Information gain of temperature  

0.971 – 0.951 = 0.20 

d. Calculate entropy of Humidity 

Entropy(Humidity= High) = 1 

Entropy(Humidity = Normal) = 0.918 

e. Calculate average information entropy of humidity 

I(Humidity) = 0.951 

f. Information gain of humidity 

Gain = 0.971 – 0.951 = 0.020 

g. Calculate entropy of Windy 

Entropy(Windy = Strong) = 0 

Entropy(Windy = Weak) = 0 

h. Calculate average information entropy of Windy  

I(Windy) = 0 

i. Information gain of Windy 

Gain = 0.971 – 0 = 0.971 

3. Select the attribute with highest information gain 

Select Windy. 

 

10) Entropy 

  

Entropy is a measure of the randomness in the information being processed. The higher the entropy, the 

harder it is to draw any conclusions from that information. Flipping a coin is an example of an action 

that provides information that is random. 
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From the above graph, it is quite evident that the entropy H(X) is zero when the probability is either 0 

or 1. The Entropy is maximum when the probability is 0.5 because it projects perfect randomness in the 

data and there is no chance if perfectly determining the outcome. 

ID3 follows the rule — A branch with an entropy of zero is a leaf node and A brach with entropy 

more than zero needs further splitting. 

Mathematically Entropy for 1 attribute is represented as: 

 
Information Gain 

 

 
 


