
CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 1 – November. 2021

Sub: MACHINE LEARNING Sub Code: 18MCA53

Date: 12-11-2021 Duration: 90 min’s
Max

Marks:
50 Sem 5th Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I
MAR

KS

OBE

CO

RBT

1a)

Well-Posed Learning Definition: A computer program is said to learn from experience E with respect

to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P,

improves with experience E.

Examples:

Checkers Game: A computer program that learns to play checkers might improve its performance as

measured by its ability to win at the class of tasks involving playing checkers game, through experience

obtained by playing games against itself.

4 CO1 L1

2b) checkers learning problem:
 Task T: playing checkers
 Performance measure P: percent of games won against opponents
 Training experience E: playing practice games against itself

A handwriting recognition learning problem:
 Task T: recognizing and classifying handwritten words within images
 Performance measure P: percent of words correctly classified

 Training experience E: a database of handwritten words with given classifications

A robot driving learning problem:
 Task T: driving on public four-lane highways using vision sensors

 Performance measure P: average distance travelled before an error (as judged by human

overseer)

 Training experience E: a sequence of images and steering commands recorded while

observing a human driver

6 CO1 L2

2) DESIGNING A LEARNING SYSTEM

The basic design issues and approaches to machine learning are illustrated by designing a

program to learn to play checkers, with the goal of entering it in the world checkers tournament
1. Choosing the Training Experience
2. Choosing the Target Function
3. Choosing a Function Approximation Algorithm

1. Estimating training values
2. Adjusting the weights

10 CO1 L2

1. Choosing the Training Experience

 The first design choice is to choose the type of training experience from which the

system will learn.

 The type of training experience available can have a significant impact on success or

failure of the learner.

There are three attributes which impact on success or failure of the learner

1. Whether the training experience provides direct or indirect feedback regarding the choices

made by the performance system.

For example, in checkers game:

In learning to play checkers, the system might learn from direct training examples consisting

of individual checkers board states and the correct move for each.

Indirect training examples consisting of the move sequences and final outcomes of various

games played. The information about the correctness of specific moves early in the game must

be inferred indirectly from the fact that the game was eventually won or lost.

Here the learner faces an additional problem of credit assignment, or determining the degree

to which each move in the sequence deserves credit or blame for the final outcome.

2. The degree to which the learner controls the sequence of training examples

For example, in checkers game:

The learner might depends on the teacher to select informative board states and to provide the

correct move for each.

Alternatively, the learner might itself propose board states that it finds particularly confusing

and ask the teacher for the correct move.

The learner may have complete control over both the board states and (indirect) training

classifications, as it does when it learns by playing against itself with no teacher present.

2. Choosing the Target Function

The next design choice is to determine exactly what type of knowledge will be learned and how this

will be used by the performance program.

Let’s consider a checkers-playing program that can generate the legal moves from any board state.

The program needs only to learn how to choose the best move from among these legal moves. We must

learn to choose among the legal moves, the most obvious choice for the type of information to be

learned is a program, or function, that chooses the best move for any given board state.

1. Let ChooseMove be the target function and the notation is

ChooseMove : B→ M
which indicate that this function accepts as input any board from the set of legal board states B

and produces as output some move from the set of legal moves M.

ChooseMove is a choice for the target function in checkers example, but this function will

turn out to be very difficult to learn given the kind of indirect training experience available to

our system

2. An alternative target function is an evaluation function that assigns a numerical score to any

given board state
Let the target function V and the notation

V:B →R

which denote that V maps any legal board state from the set B to some real value. Intend for

this target function V to assign higher scores to better board states. If the system can

successfully learn such a target function V, then it can easily use it to select the best move

from any current board position.

Let us define the target value V(b) for an arbitrary board state b in B, as follows:
 If b is a final board state that is won, then V(b) = 100
 If b is a final board state that is lost, then V(b) = -100
 If b is a final board state that is drawn, then V(b) = 0
 If b is a not a final state in the game, then V(b) = V(b'),

Where b' is the best final board state that can be achieved starting from b and playing optimally until

the end of the game

3. Choosing a Function Approximation Algorithm

In order to learn the target function f we require a set of training examples, each describing a specific

board state b and the training value Vtrain(b) for b.

Each training example is an ordered pair of the form (b, Vtrain(b)).

For instance, the following training example describes a board state b in which black has won the game

(note x2 = 0 indicates that red has no remaining pieces) and for which the target function value

Vtrain(b) is therefore +100.

((x1=3, x2=0, x3=1, x4=0, x5=0, x6=0), +100)

Function Approximation Procedure

1. Derive training examples from the indirect training experience available to the learner
2. Adjusts the weights wi to best fit these training examples

1. Estimating training values

A simple approach for estimating training values for intermediate board states is to assign the

 training value of Vtrain(b) for any intermediate board state b to be V(Successor(b))

Where ,
 ̂

V is the learner's current approximation to V

 Successor(b) denotes the next board state following b for which it is again the

program's turn to move

Rule for estimating training values
Vtrain(b) ← V (Successor(b))

 Final Design:

3) FIND-S: FINDING A MAXIMALLY SPECIFIC HYPOTHESIS

FIND-S Algorithm

1. Initialize h to the most specific hypothesis in H

10 CO1 L2

2. For each positive training instance x

For each attribute constraint ai in h

If the constraint ai is satisfied by x

Then do nothing

Else replace ai in h by the next more general constraint that is satisfied by x 3. Output

hypothesis h

Unanswered by FIND-S

1. Has the learner converged to the correct target concept?
2. Why prefer the most specific hypothesis?
3. Are the training examples consistent?
4. What if there are several maximally specific consistent hypotheses?

4) List-Then-Eliminate algorithm

1. VersionSpace ¬ a list containing every hypothesis in H

2. For each training example, <x,c(x)>, Remove from VersionSpace any hypothesis h that is

inconsistent ie. for which h(x) ¹ c(x)

3. Output the list of hypotheses in VersionSpace after checking all the training examples.

7) CANDIDATE-ELIMINTION algorithm begins by initializing the version space to the set of all

hypotheses in H;

Initializing the G boundary set to contain the most general hypothesis in H G0

Initializing the S boundary set to contain the most specific (least general) hypothesis S0

10 CO1 L5

 When the second training example is observed, it has a similar effect of generalizing S further

to S2, leaving G again unchanged i.e., G2 = G1 = G0

Consider the third training example.

Consider the fourth training example

After processing these four examples, the boundary sets S4 and G4 delimit the version space of all

hypotheses consistent with the set of incrementally observed training examples.

8) A Unbiased Hypothesis: (Includes all training examples)

 In enjoysport learning task the size of the instance space X of days described by the six attributes is 96

instances, which is 296 target values.

 But practically it is impossible to cover all the training examples.

 A Biased Hypothesis: (not all training examples are considered)

 If the candidate elimination algorithm is applied, then it ends up with empty version space.

 In that case the hypothesis is overly general and incorrectly covers the training example.

 So, the learner will generalize beyond the observed training examples to infer new examples.

 x > y

 Here, y is inductively inferred from x where,

 X is a predefined example.

 The learning algorithm is represented as,

 L(xi, Dc)

 Where,

 xi is a new instance

 Dc the training data, Dc = {áx, c(x)ñ}

 Therefore, the equation for Inductive Bias is given as,

 Inductive inference (≻)

 Dc Ù xi≻L(xi, Dc)

10 CO2 L2

5) Decision tree learning is a method for approximating discrete-valued target functions, in which the

learned function is represented by a decision tree.

DECISION TREE REPRESENTATION

 Decision trees classify instances by sorting them down the tree from the root to some leaf node,

which provides the classification of the instance.

 Each node in the tree specifies a test of some attribute of the instance, and

each branch descending from that node corresponds to one of the possible values for this

attribute.

 An instance is classified by starting at the root node of the tree, testing the attribute specified by

this node, then moving down the tree branch corresponding to the value of the attribute in the

given example. This process is then repeated for the subtree rooted at the new node.

10 CO2 L3

FIGURE: A decision tree for the concept PlayTennis. An example is classified by sorting it through the
tree to the appropriate leaf node, then returning the classification associated with this leaf.

Example:-

Let’s say we have a sample of 50 students with three variables Gender (Boy/ Girl), Class(X/ XI) and

Height (5 to 6 ft). 20 out of these 50 play cricket in rest time. Suppose you want to find on unknown

dataset which contains all the features(Gender, class, height) that he/she will play or not in rest time.

This is where decision tree supports, it will separate the students based on all values of three variable and

identify the variable, which creates the best uniform sets of students

9)

Step 1:

Total – 14 Yes(p) - 9 No(n) – 5

Attributes: Outlook ={Sunny, Overcast, Rain} Temperature = {Hot, Mild,

Cool}

 Humidity = {High, Normal} Wind ={Weak, Strong}

Step 2: Calculate the entropy of the dataset

Entropy(S) = - p+ log2 p+ - p- log2 p-

 =- -
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
) -

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
)

 =- (9/(9+5)) log(9/(9+5)) –(5/(9+5)) log(5/(9+5))

 =-(9/14) log(9/14) – (5/14) log(5/14)

 = (-0.643)(-0.637) – (0.357)(-1.486)

 =0.940

Step 3:

i) Select Outlook attribute

Outlook ={Sunny, Overcast, Rain}

Sunny : Yes(p)- 2 No(n)- 3

Overcast: Yes(p)- 4 No(n)- 0

Rain: Yes(p)- 3 No(n)- 2

a) Entropy of Outlook attribute

 =- -
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
) -

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
)

 Entropy(Outlook = Sunny) = -(2/5)log(2/5) – (3/5)log(3/5)

 = -(0.4)(-1.322) – (0.6)(-0.737) =0.971

 Entropy(Outlook = Overcast) = -(4/4)log(4/4) – 0 = 0

10 CO2 L5

 Entropy(Outlook = Rain) = -(3/5)log(3/5) – (2/5)log(2/5)

 =-(0.6)(-0.737) – (0.4)(-1.322) = 0.971

b) Average Information Entropy(I)

I(Outlook) = ((2+3)/(9+5))*0.971 + ((3+2)/(9+5))*0.971 + 0

 = (5/14)*0.971 + 0.3571*0.971

 = 0.693

c) Information Gain(Outlook) = Entropy(S) –I(Outlook)

 = 0.940 - 0.940 = 0.247

ii) Select Temperature attribute

Temperature = {Hot, Mild, Cool}

Hot : p=2 n= 2

Mild: p=4 n=2

Cool: p=3 n=1

a. Calculate the entropy for Temperature

 =- -
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
) -

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
)

Entropy(Temperature= Hot)= -(2/4)log(2/4) – (2/4)log(2/4)

 = -(0.5)(-1) – (0.5)(-1)

 = 1

Entropy(Temperature = Mild) = -(4/6)log(4/6) – (2/6)log(2/6)

 = -(0.66)(-0.599) – (0.33)(-1.599)

 = 0.923

Entropy(Temperature = Cool) = -(3/4)log(3/4) – (1/4)log(1/4)

 = -(0.75)(-0.415) – (0.25)(-2)

 = 0.811

b. Average Information Entropy(I)

I(Temperature) = (4/14)*1 + (6/14)* 0.923 + (4/14)* 0.811 = 0.913

c. Information Gain(Temperature)

 IG(Temperature) = Entropy(S) – I(Temperature)

 = 0.940 - 0.913

 = 0.027

iii) Select Humidity attribute

 Humidity = {High, Normal}

 High: p: 3 n:4

 Normal: p: 6 n: 1

a. Calculate the entropy for Temperature

 =- -
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
) -

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
)

Entropy(Humidity = High) = - (3/7)log(3/7) – (4/7)log(4/7)

 = -(0.4286)(-1.2223) – (0.5714)(-0.8074)

 = 0.985

Entropy(Humidity = Normal) = -(6/7)log(6/7) – (1/7)log(1/7)

 = -(0.8571)(-0.2225)-(0.1429)(-2.8069) = 0.591

b. Average Information Entropy

c. Average Information Entropy(I)

I(Humidity) = (7/14)*0.985 + (7/14)*0.591

 = 0.788

d. Information Gain(Humidity)

IG(Humidity) = Entropy(S) – I(Humidity)

 = 0.940 – 0.788

 = 0.152

iv) Select Windy attribute

 Wind ={Weak, Strong}

Weak: p:6 n:2

Strong: p:3 n:3

a. Calculate the entropy for Windy

 =- -
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
) -

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
)

Entropy(Windy = Weak) = -(6/8)log(6/8) – (2/8)log(2/8)

 = 0.811

Entropy(Windy = Strong) = -(3/6)log (3/6) – (3/6)log(3/6)

 = 1

b. Average Information Entropy(I)

I(Windy) = (8/14)* 0.811 + (6/14)*1

 = 0.892

c. Information Gain(Windy)

IG(Windy) = Entropy(S) – I(Windy)

 = 0.940 – 0.892 = 0.048

IG(Outlook) = 0.247

IG(Temperature) = 0.27

IG(Humidity) = 0.152

IG(Windy) = 0.048

Highest Information Gain is 0.247 -> Outlook

P:2 N:3 Total:5

Temperature= {hot, cool, mild}

Hot:p:0 n:2

Cool: p:1 n:0

Mild: p:1 n:1

Humidity={High, Normal}

High: p:0 n:3

Normal:p:2 n:0

Windy:{Weak, Strong}

Weak: p:1 n:2

Strong: p:1 n:1

1. Calculate the entropy of Dataset(S)

=- -
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
) -

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
)

Entropy = -(2/5)log(2/5) – (3/5)log(3/5) = 0.971

2. Calculate the Information Gain

a. Calculate entropy of humidity

Entropy(Humidity = High) = 0 – (3/3)log(3/3) = 0

Entropy(Humidity = Normal) = 0

b. Calculate Average information entropy(I) of humidity

I(Humidity) = 0

c. Information gain of humidity

IG(Humidity) = Entropy(S) – I(Humidity)

 =0.971 – 0 = 0.971

d. Calculate entropy of Windy

Windy:{Weak, Strong}

Weak: p:1 n:2

Strong: p:1 n:1

=- -
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
) -

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
)

Entropy(Windy = Weak) = -(1/3)log(1/3) – (2/3)log(2/3) = 0.918

Entropy(wind = Strong) = -(1/2)log(1/2) – (1/2) log(1/2) =1

e. Calculate Average information entropy of windy

I(Windy) = (3/5) *0.918 + (2/5)*1 = 0.951

f. Information gain of windy

IG(Windy) = Entropy(S) - I(Windy)

 = 0.971- 0.951 = 0.020

g. Calculate entropy of temperature

Temperature= {hot, cool, mild}

Hot:p:0 n:2

Cool: p:1 n:0

Mild: p:1 n:1

=- -
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
) -

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
)

Entropy (Temperature = hot) = 0

Entropy(Temperature = Cool) = 0

Entropy(Temperature = mild) = -(1/2)log(1/2) – (1/2)log(1/2) = 1

h. Calculate Average information entropy of temperature

I(temperature) = (2/5) * 0 + (1/5)*0 + (2/5)*1= 0.4

i. Information gain of temperature

IG(Temperature) =0.971 - 0.4 = 0.571

3. Select the attribute with highest information gain

IG(Temperature) =0.971 - 0.4 = 0.571

IG(Windy) = 0.020

IG(Humidity) = 0.971

 Total = 5

 P=3

 N= 2

1. Calculate the entropy of the dataset(S)
𝒑

𝒑+𝒏
𝒍𝒐𝒈 (

𝒑

𝒑+𝒏
) -

𝒏

𝒑+𝒏
𝒍𝒐𝒈 (

𝒏

𝒑+𝒏
)

Entropy = - (3/5)log(3/5) – (2/5)log(2/5) = 0.971

2. Calculate the information gain

a. Calculate entropy of temperature

Temperature ={mild, cool}

Mild:p:2 n:1

Cool:p:1 n:1

Entropy(temperature = mild) = -(2/3)log(2/3) – (1/3)log(1/3) = 0.918

Entropy(temperature = cool) =-(1/2)log(1/2) – (1/2)log(1/2) = 1

b. Calculate average information entropy of temperature

I(Temperature) = 0.951

c. Information gain of temperature

0.971 – 0.951 = 0.20

d. Calculate entropy of Humidity

Entropy(Humidity= High) = 1

Entropy(Humidity = Normal) = 0.918

e. Calculate average information entropy of humidity

I(Humidity) = 0.951

f. Information gain of humidity

Gain = 0.971 – 0.951 = 0.020

g. Calculate entropy of Windy

Entropy(Windy = Strong) = 0

Entropy(Windy = Weak) = 0

h. Calculate average information entropy of Windy

I(Windy) = 0

i. Information gain of Windy

Gain = 0.971 – 0 = 0.971

3. Select the attribute with highest information gain

Select Windy.

10) Entropy

Entropy is a measure of the randomness in the information being processed. The higher the entropy, the

harder it is to draw any conclusions from that information. Flipping a coin is an example of an action

that provides information that is random.

10 CO2 L2

From the above graph, it is quite evident that the entropy H(X) is zero when the probability is either 0

or 1. The Entropy is maximum when the probability is 0.5 because it projects perfect randomness in the

data and there is no chance if perfectly determining the outcome.

ID3 follows the rule — A branch with an entropy of zero is a leaf node and A brach with entropy

more than zero needs further splitting.

Mathematically Entropy for 1 attribute is represented as:

Information Gain

