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Note : Answer FIVE FULL Questions, choosing ONE full question from each Module Marks 
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CO RBT 

 

Q1 
Part-I 

Discuss the concept of Perceptron with a diagram and also write a note on the problems 

appropriate for Neural Network. 

10 CO3 L3 

 

Q2 

or 

Write the Gradient decent Algorithm and visualize the Hypothesis space for gradient 

decent rule. 

10 CO3 L2 

 

Q3 
Part-II 

What is linearly in separable problem? Design a two-layer Back propagation network 

for feed forward network. 

10 CO3 L3 

 

Q4 
or 

Write the Back Propagation algorithm. 
10 CO3 L2 

 

Q5 

Part-III 

Explain Bayes Theorem and discuss the need for Maximum A Posteriori hypothesis and 

Maximum Likelihood Hypothesis. 

10 CO3 L2 

 

Q 6 
or 

Prove that how maximum likelihood (Bayesian Learning) can be used in any learning 

algorithm that are used to minimize the squared error between actual output hypothesis 

and predicted output hypothesis. 

10 CO4 L3 
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Q7 
Part-IV 

Prove that maximum likelihood hypothesis can be used to predict probabilities. 
10 CO4 L3 

 

Q 8 
or 

Consider a medical diagnosis problem in which there are two alternative hypotheses: 

1: the patient has cancer (+) and 2:  the patient does not (-). A patient takes a lab test 

and the result comes back positive. Given: correct positive result is 98% and a correct 

negative result is 97% also only 0.008 of the entire population has this disease. 

Determine if the patient having +ve report has cancer or not using MAP hypothesis. 

10 CO4 L3 

 

Q 9 
Part-V 

Explain Brute Force Bayes concept learning and derive the posterior probability 

P(D\h). 

10 CO3 L2 

 

Q 10 
or 

Apply Naïve Bayes classifier classify the new data (Outlook = Sunny, Temperature = 

Cool, Humidity = High, Wind = Strong). 
Day Outlook Temperature Humidity Wind Play Tennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
 

10 CO3 L3 
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10 

or 

Apply Naïve Bayes classifier classify the new data (Outlook = Sunny, Temperature = 

Cool, Humidity = High, Wind = Strong). 
Day Outlook Temperature Humidity Wind Play Tennis 

D1 Sunny Hot High Weak No 

D2 Sunny Hot High Strong No 

D3 Overcast Hot High Weak Yes 

D4 Rain Mild High Weak Yes 

D5 Rain Cool Normal Weak Yes 

D6 Rain Cool Normal Strong No 

D7 Overcast Cool Normal Strong Yes 

D8 Sunny Mild High Weak No 

D9 Sunny Cool Normal Weak Yes 

D10 Rain Mild Normal Weak Yes 

D11 Sunny Mild Normal Strong Yes 

D12 Overcast Mild High Strong Yes 

D13 Overcast Hot Normal Weak Yes 

D14 Rain Mild High Strong No 
 

10 CO3 L3 



 

 



 

Q1. Discuss the concept of Perceptron with a diagram and also write a note on the problems 

appropriate for Neural Network. 

Representational Power of Perceptrons: 

 The perceptron can be viewed as representing a hyperplane decision surface in 

the n- dimensional space of instances (i.e., points) 

 The perceptron outputs a 1 for instances lying on one side of the hyperplane and 

outputs a -1 for instances lying on the other side, as illustrated in below figure 

 

 

 

 

Q2 

Write the Gradient decent Algorithm and visualize the Hypothesis space for gradient decent 

rule. 



 

• Perceptron learning converges to a consistent model  if D (training set) is linearly 

separable. 

• If the data is not linearly separable than this will not converge.  

• If the training examples are not linearly separable, the delta rule converges toward a best-

fit approximation to the target concept. 

• The key idea behind the delta rule is to use gradient descent to search the hypothesis 

space of possible weight vectors to find the weights that best fit the training examples. 

 

 
• Gradient descent search determines a weight vector that minimizes E by starting with an 

arbitrary initial weight vector, then repeatedly modifying it in small steps. 

• At each step, the weight vector is altered in the direction that produces the steepest 

descent along the error surface depicted in above figure. This process continues until the 

global minimum error is reached. 

 

Q3 

What is linearly in separable problem? Design a two-layer Back propagation network for feed 

forward network. 

 



 

 

Q4 

Write the Back Propagation algorithm. 

 

Q5 



Explain Bayes Theorem and discuss the need for Maximum A Posteriori hypothesis and 

Maximum Likelihood Hypothesis. 

 

• We are interested in  finding the most probable hypothesis h ϵ H given the observed 

data D (or at least  one of the maximally probable if there are several). 

• Any such maximally probable hypothesis is called a maximum a posteriori (MAP) 

hypothesis. 

• We can determine the MAP hypotheses by using Bayes theorem to calculate the  

posterior probability of each candidate hypothesis. 

• More precisely, we will say that hMAP is a MAP hypothesis provided 

 

• Notice in the final step above we dropped the term P(D) because it is a constant 

independent of h. 

Maximum Likelihood Hypothesos: 

• In some cases, we will assume that every hypothesis in H is equally  probable a priori 

(P(hi) = P(hj) for all hi and hj in H). 

•  

• Here, P(D\h) is called as the likelihood of the data D given h.  

• Any hypothesis that maximizes it id called ML hypothesis. 

 

 



Q 6  

Prove that how maximum likelihood (Bayesian Learning) can be used in any learning 

algorithm that are used to minimize the squared error between actual output hypothesis and 

predicted output hypothesis. 

A straightforward Bayesian analysis will show that under certain assumptions any learning 

algorithm that minimizes the squared error between the output hypothesis predictions and the 

training data will output a maximum likelihood (ML) hypothesis 

 

 Learner L considers an instance space X and a hypothesis space H consisting of some 
class of real-valued functions defined over X, i.e., (∀ h ∈ H)[ h : X → R] and training 
examples of the form <xi, di>  

 The problem faced by L is to learn an unknown target function f : X → R 
 

 A set of m training examples is provided, where the target value of each example is 

corrupted by random noise drawn according to a Normal probability distribution with 

zero mean (di = f(xi) + ei)  

 Each training example is a pair of the form (xi ,di ) where di = f (xi ) + ei .  

– Here f(xi) is the noise-free value of the target function and ei is a random 

variable representing the noise. 

 

– It is assumed that the values of the ei are drawn independently and that they are 

distributed according to a Normal distribution with zero mean. 

 

 The task of the learner is to output a maximum likelihood hypothesis or a MAP 

hypothesis assuming all hypotheses are equally probable a priori. 

 

Using the definition of hML we have 

 

 
Assuming training examples are mutually independent given h, we can write P(D|h) as the 

product of the various (di|h) 

 
 

Given the noise ei obeys a Normal distribution with zero mean and unknown variance σ2 , each 

di must also obey a Normal distribution around the true targetvalue f(xi). Because we are 

writing the expression for P(D|h), we assume h is the correct description of f. 
 



Hence, µ = f(xi) = h(xi) 

 

 
 

 
Thus, above equation shows that the maximum likelihood hypothesis hML is the one that 

minimizes the sum of the squared errors between the observed training values di and the 

hypothesis predictions h(xi) 

Q7 

Prove that maximum likelihood hypothesis can be used to predict probabilities. 

 Consider the setting in which we wish to learn a nondeterministic (probabilistic) 

function f : X → {0, 1}, which has two discrete output values. 
 

 We want a function approximator whose output is the probability that f(x) = 1. In 

other words, learn the target function f ` : X → [0, 1] such that f ` (x) = P(f(x) = 

1) 

 

How can we learn f ` using a neural network? 

 



 Use of brute force way would be to first collect the observed frequencies of 1's 

and 0's for each possible value of x and to then train the neural network to output 

the target frequency for each x. 

 

What criterion should we optimize in order to find a maximum likelihood hypothesis for 

f' in this setting? 
 

 First obtain an expression for P(D|h) 
 

 Assume the training data D is of the form D = {(x1, d1) . . . (xm, dm)}, where di 

is the observed 0 or 1 value for f (xi). 
 

 Both xi and di as random variables, and assuming that each training example is 

drawn independently, we can write P(D|h) as 

 

               

 

Applying the product rule 

 

 

The probability P(di|h, xi) 

 

  

 

Re-express it in a more mathematically manipulable form, as 

  

 

Equation (4) to substitute for P(di |h, xi) in Equation (5) to obtain 



  

 

We write an expression for the maximum likelihood hypothesis 

 

 

 

The last term is a constant independent of h, so it can be dropped 

 

 

It easier to work with the log of the likelihood, yielding 

 

 

 

Equation (7) describes the quantity that must be maximized in order to obtain the maximum 

likelihood hypothesis in our current problem setting. 

 

Q 8 

Consider a medical diagnosis problem in which there are two alternative hypotheses: 1: the 

patient has cancer (+) and 2:  the patient does not (-). A patient takes a lab test and the result 

comes back positive. Given: correct positive result is 98% and a correct negative result is 

97% also only 0.008 of the entire population has this disease. Determine if the patient having 

+ve report has cancer or not using MAP hypothesis. 

P(cancer) = 0.008     P(⌐cancer) = 1 – 0.008 

          = 0.992 

P(+|cancer) = 0.98            P(- |cancer) = 1-0.98= 0.02 

P(- | ⌐cancer) = 0.97    P(+ |⌐cancer)=1-0.97= 0.03 



Now a new patient, whose test result is positive, Should we diagnose the patient have cancer 

or not? 

 

 

P(cancer|+) = P(+ |cancer) * P(cancer) 

       = 0.98 * 0.008 

       = 0.078 

P(⌐cancer | +) = P(+ | ⌐cancer) * P(⌐cancer) 

           = 0.03 * 0.992 

   = 0.298 

Since, 

P(cancer|+)   < P(⌐cancer | +) 

So we can conclude that, 

Diagnosis : Not having cancer 

 

 

Q 9. Explain Brute Force Bayes concept learning and derive the posterior probability P(D\h). 

Brute-Force Bayes Concept Learning 

 

Consider the concept learning problem 

 

 Assume the learner considers some finite hypothesis space H defined over 

the instance space X, in which the task is to learn some target concept c : X 

→ {0,1}. 
 

 Learner is given some sequence of training examples ((x1, d1) . . . (xm, 

dm)) where xi is some instance from X and where di is the target value of xi 

(i.e., di = c(xi)).  

 The sequence of target values are written as D = (d1 . . . dm). 
 

 

We can design a straightforward concept learning algorithm to output the 

maximum a posteriori hypothesis, based on Bayes theorem, as follows: 
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BRUTE-FORCE MAP LEARNING algorithm: 

 

 

In order specify a learning problem for the BRUTE-FORCE MAP LEARNING 

algorithm we must specify what values are to be used for P(h) and for P(D|h) ? 

 

Let’s choose P(h) and for P(D|h) to be consistent with the following assumptions: 
 

 The training data D is noise free (i.e., di = c(xi))  

 The target concept c is contained in the hypothesis space H 
 

Do not have a priori reason to believe that any hypothesis is more probable than any 

other. 

 

 

 

 



 

 

 

To summarize, Bayes theorem implies that the posterior probability P(h|D) under our 

assumed P(h) and P(D|h) is 

 

 

 

Q 10  



Apply Naïve Bayes classifier classify the new data (Outlook = Sunny, Temperature = Cool, 

Humidity = High, Wind = Strong). 

Step 1: Convert the data into a frequency table. 

Play Frequency 

Yes 9 

No 5 

 

Outlook Yes No 

Sunny 2 3 

Overcast 4 0 

Rain 3 2 

 

Temperature Yes No 

Hot 2 2 

Mild 4 2 

Cool 3 1 

 

Humidity Yes No 

High 3 4 

Normal 6 1 

 

Wind Yes No 

Strong 3 3 

Weak 6 2 

 

Step 2:  Create Likelihood table 

Play Frequency Likelihood 

Yes 9 9/14 

No 5 5/14 

 

Outlook Yes No 

Sunny 2/9 3/5 

Overcast 4/9 0/5 

Rain 3/9 2/5 

 

Temperature Yes No 

Hot 2/9 2/5 

Mild 4/9 2/5 

Cool 3/9 1/5 

 

Humidity Yes No 



High 3/9 4/5 

Normal 6/9 1/5 

 

Wind Yes No 

Strong 3/9 3/5 

Weak 6/9 2/5 

 

Step 3:  

New instance  

X= (Outlook = Sunny, Temperature = Cool, Humidity = High, Wind = 

Strong) 

Play Tennis = ? 

 

P(X |Play = Yes) = P(Play = Yes) * P(Outlook = Sunny |Yes) * P(Temperature = 

Cool|Yes) * P(Humidity = High|Yes) * P(Wind = Strong|Yes) 

    = 9/14 * 2/9 * 3/9 * 3/9 * 3/9 

             = 0.0053 

 

P(X|Play = No) = P(Play = No) * P(Outlook = Sunny |No) * P(Temperature = 

Cool|No) * P(Humidity = High|No) *  P(Wind = Strong|No) 

   

  = 5/14 * 3/5 * 1/5 * 4/5 * 3/5 

  = 0.0206 

 

So: 0.0206 > 0.0053 

Result : X : PlayTennis = No 
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