USN							CMRIT * CMR INSTITUTE OF TECHNOLOGY, BENGALURU. ACCREDITED WITH AN GRADE BY NAAC						
	Internal Assessment Test 1 –Nov. 2021												
Sub:	Control Engineering					Sub Code:	18ME71/17 ME73/15M E73	Bra	nnch: Mech				
Date:	15.11.21 Duration: 90 min's Max Marks: 50					Sem/Sec:	VII	/A&B		OBE			
Answer All the Questions									MAI	MARKS CO R		RBT	
1	K- 0000 M	///// K ₂ 3 D ₂ 2 D ₁ F	sy	raw equivalent rstem. Hence w or it and obtain e (i) FV a (ii) FI an	rite tl electr nalog	he set of equical analogor	ilibrium equat	ions	[1	0]	CO2	L2	
2	⊗	<u>-</u> ₩	H ₂		i —	diagra form	ce the given beam to its simple and find fer function.		[1	0]	CO4	L2	
3	R(s)————————————————————————————————————	en block diag	G ₁ H ₂ ram to its ca	G ₃	<u></u>	ence find its		C(s)	[1	0]	CO4	L2	

Faculty Signature CCI Signature HOD Signature

18ME71/17ME73/15ME73 Control Engineering IAT1 Solution

1.

$$f(t) = M_1 \frac{d^2 x_1}{dt^2} + D_1 \frac{d}{dt} (x_1 - x_2).$$

At node 22

At node R3.

F-V, M-L, D-R, K-1/2., x-9.

Ly (1) q(1) | 1/2 |

Applying EVI to 100p(2).

$$0 = L_2 \frac{d^2 q_2(t)}{dt^2} + R_1 \frac{d}{dt} \left(q_2(t) - q_4(t) \right) + R_2 \frac{d}{dt} \left(q_2(t) - q_3(t) \right) + \frac{d}{c_1} \left(q_2(t) - q_3(t) \right)$$

Applying KVL to loop(3)

ilt) = c, dra,(1) + 1 d (0, (1) - 12(1)) 0 = (2 dr \p_2(+)) + \frac{1}{R_1} \frac{d}{at} (\pa_2(+) - \phi_1(+)) + \frac{1}{R_2} \frac{d}{at} (\phi_2(+) - \phi_3(+)) + \frac{1}{R_2 1 (O2(+) - P3(+)). 0=C3 dr \$\partial dr \partial \tau \tau \left(\partial d\tau \) + \frac{1}{4} \left(\partial d

Shifting take off point of G_4 after G_3 we get,

G4 and H1 forms minor loop.

Shift take off point of G_3 after the block G_2 .

Fig. 6.3.37 (b)

$$\frac{C(s)}{R(s)} = \frac{\frac{G_1G_4(G_2 + G_3)}{(1 + G_1G_2H_2)(1 + G_4H_1)}}{1 + \frac{G_1G_4(G_2 + G_3)}{(1 + G_1G_2H_2)(1 + G_4H_1)}} \qquad \text{R(s)} \qquad \frac{G_4G_4(G_2 + G_3)}{(1 + G_1G_2H_2)(1 + G_4H_1)} \qquad \text{C(s)}$$

Fig. 5.3.37 (d)

$$\frac{C(s)}{R(s)} = \frac{G_1G_4(G_2 + G_3)}{I + G_1G_2H_2 + G_4H_1 + G_1G_2G_4H_1H_2 + G_1G_2G_4 + G_1G_3G_4}$$

Sol: The number of forward paths are K = 6.

The forward path gains are,

$$\mathsf{T}_1 \,=\, \mathsf{G}_\mathsf{f} \mathsf{G}_2 \mathsf{G}_3,$$

$$T_2 = G_4G_5G_6$$

$$T_3 = G_1G_7G_5,$$

$$\mathbf{T_4} = \mathbf{G_4} \, \mathbf{G_8} \, \mathbf{G_3}$$

$$T_5 = G_4G_8(-H_2)G_7G_6$$
, $T_6 = G_1G_7(-H_1)G_8G_3$

The feedback loop gains are,

$$L_1$$
 _ - G_5 H_1 , L_2 = - G_2 H_2 , L_3 = + G_7 H_1 G_8 H_2 The two nontouching loops are L_1 L_2

$$L_1 L_2 = + G_2 G_5 H_1 H_2$$

$$\Delta = 1 - [L_1 + L_2 + L_3] + [L_1 L_2] = 1 + G_5 H_1 + G_2 H_2 - G_7 G_8 H_1 H_2 + G_2 G_5 H_1 H_2$$

For T₁, L₁ is nontouching.

$$\Delta_1 = 1 - L_1 = 1 + G_5 H_1$$

For T2, L2 is nontouching.

For T3 to T6 all loops are touching to all forward paths.

$$\Delta_3 = \Delta_4 = \Delta_5 = \Delta_6 = 1$$

$$\therefore \qquad \qquad Gain = \frac{\sum T_K \Delta_K}{\Delta} = \frac{T_1 \Delta_1 + T_2 \Delta_2 + T_3 \Delta_3 + T_4 \Delta_4 + T_5 \Delta_5 + T_6 \Delta_6}{\Delta}$$

$$Gain = \frac{G_1G_2G_3 (1+G_5H_1) + G_4G_5G_6 (1+G_2H_2) + G_1G_7G_6 + G_4G_8G_3 - G_4G_8G_7G_6H_2 - G_1G_3G_7G_8H_1}{1+G_5H_1 + G_2H_2 - G_7G_8H_1H_2 + G_2G_5H_1H_2}$$

Sol.: Representing each summing and take off point by a separate node, the signal flow graph is as shown in the Fig. 6.5.6 (a).

Fig. 6.5.6

Forward path gains are,

$$T_1 = G_1G_2,$$

 $T_2 = G_1G_3,$
 $T_3 = +G_4H_2G_1G_2$
 $T_4 = G_4H_2G_1G_3$

The feedback loop gains are,

$$L_1 = -G_1G_2H_1H_2,$$

 $L_2 = -G_1G_3H_1H_2$

No combination of non-touching loops.

$$\Delta = 1 - [L_1 + L_2]$$

All loops are touching to all the forward paths hence $\Delta_1 = \Delta_2 = \Delta_3 = \Delta_4 = 1$

$$\frac{C}{R} = \frac{T_1\Delta_1 + T_2\Delta_2 + T_3\Delta_3 + T_4\Delta_4}{\Delta}$$

$$\frac{C}{R} = \begin{bmatrix} \frac{G_1G_2 + G_1G_3 + G_1G_2G_4H_2 + G_1G_3G_4H_2}{1 + G_1G_2H_1H_2 + G_1G_3H_1H_2} \end{bmatrix}$$