

Solution for Internal Assessment Test I -Nov 2021

1.

SENSITIVENESS

W.

is defined as the ratio of the difference between It is defined as the ratio of it is a the mean equilibrium Speed

Mean Speed
$$
N = \frac{N_1 + N_2}{a}
$$

\n
$$
\therefore
$$
 Sensitiveness $= \frac{N_2 - N_1}{N} = \frac{N_2 - N_1}{N_1 + N_2} = \frac{2(N_2 - N_1)}{N_1 + N_2}$

$$
= \frac{2(\omega_2-\omega_1)}{\omega_1+\omega_2}
$$

ESOCHRONOUS GOVERNOR
A Jovanor is Said to be isochronous who the A governor is said to be isochronous and speed is zero) equilibrium Speed is Grotant (i.e ruinge within the
fou all seadil of notation of the balls within the working trange, neglecting friction. 22

HUNTING

A governon is said to be hust if the speed of the engine fluctuates Continuously above & below the mean Speed. This is caused by a Sensitive governor. In actual Practice hunting is impossible in an isochnowns governar because of fiction of mechanism.

EFFORT & POWER OF A GOVERNOR

The effort of a governor is the mean face exerted at the sleeve for a given percentage change of Speed.

 \mathcal{A}

$$
w^{2} = \frac{\pi}{mnh} \left[mg + \frac{Mg}{2} (1+k) \right]
$$

$$
= \frac{1}{mh} \left[mg + \frac{Mg}{2} (1+k) \right]
$$

$$
\left(\frac{2\pi N}{60}\right)^{2} = \frac{1}{mh} \left[mg + \frac{Mg}{2} (1+k) \right]
$$

$$
= \frac{g}{h} \left[m + \frac{M}{2} (1+k) \right]
$$

$$
N^{2} = \frac{895}{h} \left[m + \frac{M}{2} (1+k) \right]
$$

Four masses 150, 250, 200 & 300 kg are entating in Same plase at stadii of 0.25m, 0.2m, 0.3m & 0.35m 9tegp. There angular locations are 40°, 120° & 250° from mads 150kg respectively measured in Guster-clockwise direction. Find the position & magnitude of balance mass required, if its radius of rotation is 0.25m.

 $\sum \mu = 9.9$ $\sum v = -14.57$

Resultant $R = \sqrt{(2H)^2 + (2V)^2} = \sqrt{9.9^2 + (-14.57)^2}$ \sqrt{R} = 17.61 Kg-m. $tan \theta = \frac{\sum V}{\sum H} = \frac{-14.57}{9.9} = -1.47172$ $\theta = -55.8$ $\theta_{b} = 180 + 8 = 180 - 55.8$ θ_b = 124.2⁰

3

STATIC AND DYNAMIC BACANCING

 $\overline{4}$

Static balance will be provided if the sum of the moments of weights about the anis of riotation is zero <u>or</u> A rotar is said to be Statically balanced if Vector sum of Centrifugal forces is zero.

A System of rotating masses is in dynamic balance when there does not enist any resultant Centrifugal fonce as well as resultant couple ine for dynamic force i) Suns of Centrifugal forces must be equal to zero ii) Suns of Couple must be equal to Zero.

 $\label{eq:1.1} \mathcal{E}^{(1)}=\mathcal{E}^{(2)}\otimes\mathcal{E}^{(1)}\otimes\mathcal{E}^{(2)}\otimes\mathcal{E}^{(3)}\otimes\mathcal{E}^{(4)}\otimes\mathcal{E}^{(5)}\otimes\mathcal{E}^{(6)}\otimes\mathcal{E}^{(6)}\otimes\mathcal{E}^{(7)}\otimes\mathcal{E}^{(8)}\otimes\mathcal{E}^{(8)}\otimes\mathcal{E}^{(9)}\otimes\mathcal{E}^{(9)}\otimes\mathcal{E}^{(9)}\otimes\mathcal{E}^{(9)}\otimes\mathcal{E}$

Bernard Bernard

BALANCING OF SINGLE ROTATING MASS IN TWO DIFFERENT PLANSE CASE i) BOTH THE MASSES ARE ON SAME SIDE M $m₂$ ℓ_1 e 4_{2} A Q. $2,$ \mathcal{H}_1 H_1 Consider a disturbing mass m lying in plane A to be balanced by two notating masses m, 3 m2 lying in different planes & & M as shown. Let n , n_1 , n_2 be the radii of rotation of masses in plancs A, L & M respectively. For perfect balancing, the following craditions to be satisfied A Surs of cestrifugue forces must be equal to Zero (IF=0) 2) Suro of Couples about any plane must be equal to $Z_{U\varphi}$ $(ZC=0)$

Ξ $5\overline{)}$

$$
\sum F = 0
$$
\n
$$
m\omega^{2} + 4m_{2}\omega^{2} + 2m_{1} \omega^{2} + n_{1}
$$
\n
$$
m\omega^{2} + 4m_{2}\omega^{2} + 2m_{1} \omega^{2} + n_{1}
$$
\n
$$
m\omega^{2} + 4m_{2}\omega^{2} = m_{1}m_{1}
$$
\n
$$
\sum C = 0
$$
\n
$$
G\omega \text{p}l\omega \text{ about } \text{ point P.}
$$
\n
$$
m\omega^{2} + 4m_{2} \omega^{2} = m_{1}\omega^{2} + 4m_{1} \omega^{2}
$$
\n
$$
m\omega^{2} + 4m_{2} \omega^{2} = m_{2}\omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} \omega^{2} + 4m_{2} \omega^{2} = m_{2}\omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} = m_{2} \omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} = m_{2} \omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} = m_{2} \omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} = m_{2} \omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} = m_{2} \omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} = m_{2} \omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} = m_{2} \omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} = m_{2} \omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} = m_{2} \omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} = m_{2} \omega^{2} + 4m_{2} \omega^{2}
$$
\n
$$
m_{2}m_{2} = m_{2} \omega^{2} + 4m_{2} \omega^{2}
$$
\n

 \mathcal{L}

 $\frac{1}{2}$

Consider a distribution mass no. 1920 in plane A
\n
$$
log_{10}
$$
 on either side in 4.40000.
\n $det n, \pi_1, n_2$ be the radius of x 6 M as the 4000.
\n $det n, \pi_1, n_2$ be the radius of x 6 M as the 4000.
\n $det n, \pi_1, n_2$ be the radius of x 6 M as the 4000.
\n $det n, \pi_1, n_2$ be the radius of x 6 M as the 4000.
\n $cos \theta = n_0$ when $sin \theta = n_0$ when $cos \theta = n_0$ when cos

 \sim 18.

Given
\n
$$
m=1.4 \text{ kg}
$$
; $x = 100 \text{ m} = 0.1 \text{ m}$; $y = 50 \text{ mm} = 0.05 \text{ m}$
\n $n_1 = 75 \text{ mm} = 0.075 \text{ m}$;
\n $n_2 = 112.5 \text{ mm} = 0.1125 \text{ m}$; $91 = 0.09 \text{ m}$
\n $N_1 = 300 \text{ mm}$; $N_2 = 300 + \frac{6}{100} \times 300 = 318 \text{ m/m}$.
\n $S = 9$; $N = 9$
\nAngular velocity: $\omega_1 = \frac{2\pi N_1}{60} = \frac{2\pi (300)}{60} = 31.42 \text{ m/s}$.
\n C Reptrifugae
\n F Eq = $m_1 \omega_1^2 n_1^2$
\n $= 1.4 \left(31.42 \right)^2 0.075$
\n F Eq = 103.66 N/

 $\overline{6}$

Stiffness of
\n
$$
S = \alpha \left[\frac{F_{2} - F_{C_1}}{n_{2} - n_{1}} \right] \left[\frac{\alpha}{9} \right]^{2}
$$

\n $= \alpha \left[\frac{174.65 - 103.66}{0.1125 - 0.075} \right] \left[\frac{0.1}{0.05} \right]^{2}$
\n $= \left[S = 15.14 \times 10^{3} \text{ N/m} \right]$

Corctrifugal force at
$$
91 = 0.09 \, \text{m}
$$

\n $S = \alpha$, $\left[\frac{Fc_2 - F}{r_2 - r} \right] \left[\frac{\pi}{3} \right]^2$

\n $15.14 \times 10^3 = 2 \left[\frac{174.65 - F}{0.1125 - 0.09} \right] \left[\frac{\pi}{0.05} \right]^2$

$$
F = 132.07 N/
$$

Cestrifugal fance $F = m \omega^2 n$ $132.07 = 14 \left(\frac{2 \text{FN}}{60} \right)^2 0.09$ $N = 309.16$ 91pm

 \mathcal{Z}