Internal Assesment Test – 2 | Sub: Mechanics of Materials | | Code: 18ME52 | | | |--|-------------------------|--------------|-----|--| | Date: 25/01/2022 | Branch (section | s): ME | | | | Answer one question from Part A and 3 questions from | Part B | | | | | PART A | | OBE | | | | A beam 25 m long is supported at A and B and is loaded as shown in fig. 1. Dr and BMD for the beam. Find the position and magnitude of the maximum I moment. Also determine the point of contraflexure. | | CO | RBT | | | Fig. 1 | 30 KN | CO4 | L3 | | | Draw SFD and BMD for the beam show in fig.2. Indicate all principal values. 6 KN 3 KN A KN 4m 2m 4m 2m Fig. 2 PART B | [20] | CO4 | L3 | | | 3 With usual notations derive Lame's equation. | [10] | CO2 | L2 | | | (a) Derive an expression to find longitudinal stress in thin cylinder. (b) Derive an expression to find circumferential stress in thin cylinder. | [10] | CO2 | L2 | | | A thin cylindrical shell is 3m long and 1m in internal diameter. It is subject internal pressure of 1.2 MPa. If the thickness of the sheet is 12mm, for circumferential stress, longitudinal stress, changes in diameter, length and μ Take E=200 GPa and μ = 0.3. | ind the [10]
volume. | CO2 | L2 | | | A thick cylindrical pipe of internal diameter 500 mm and 75 mm thick is subjet an internal fluid pressure of 6 N/mm ² and external pressure of 5 N/mm ² . Determine the maximum hoop and minimum stress developed and draw the variation of stress and radial stress across the thickness of the cylinder. | termine | CO2 | L2 | | Between D and B, Shearforce is constant at - 47.5 KN FB = - 47. TEN (without point load) S.F at B. FB: -47.5+77.5: +30KN [Sudden variation due to point Between B and C Shearforce is constant at +30KN S.F at C, Fc = +30 KN Bending moment diagram (BMD) Bending moment at A, MA = 0 B. M at E, ME = T2.5 XID- (10 XID) (10/2) = +225 KNm (Parabolic) B.M at D. MD = +72.5 X15 - (10×10) (10/2+5) = +87.5 KNm B.m at B, MB: +72.5 x20- (10 x10) (10/2+10) -20x5 =-150KNm B.M atr, Mr = 72.5×25- (10×10) (10+15)- 20×10+77.5×5=0 To find maximum bending noment. At 'F', Shear force is changing its sign. Shear force at F, FF = 72.5-10x (20m) (20 = 1 Bending moment at F. MF = 725 x7.25-(10 x7.25) (7.25) = +262.8125 KNm (Ans). Point of contraffexure (Itis the point where the BM changes its SJn) B.m. at G. MG = - 304 + 77.5 (4-5) - 304 +17.54-387.5 = 0 .. y = 8.1579m (Ans) .. Point of contraftexure at G is 8.1579m from c. To find Reactions at supports CRA & RB). Take moments about A RBX10= (2×4)(4/2)+6×4+3×6+(3×2)(2/2+10) =0 .. RB = 12.4 KN (Ans) Total load = RA+RB RA+12.4= (2×4)+6+3+(3×2) .. RA = (0.6 KN CAns) Shear force diagram (SFD) S.F at A , FA = + RA = + 10.6KN S.F at D, FB = RA - 2x4 = 2.6KN S.F at D. FD = 2.6-6 = -3.4 KN Esudden variation due to Point load at D] ``` Shear torce remains constant between Dond E S. F at E, FE =-$3.4KN. S.F ad E, FE = -43.4-3 = -6.4KN Coudden variation due to Point load shear-bree remains constant between E and B S. F at B, FB: -6.4KN S. F at B, FB = - 6.44-12.4 = 6 KD [Sudden variation due to RB] S.F at (, Fc = 6 - 3x2 = 0 Bending moment diagram (BMD) B. m at A, MA = 0 B. m at B, MD = RAX4 - (2X4)(4/2) = +26.4 KNm B.m at E, ME = RAX6- (2×4)(4/2+2)-6×2 = +19.6 KNm Bm at B, MB= RAX 10 - (2x4) (4+6) - 6x6-3x4=-6KNm B.M atc, Mc = 0 RAXI2-(2X4)(4/2+8)-6x8-3x6+ RBX2-(3x2)(2/2)=0 Point of contrallexure: Bending moment at F, MF= - (3x2) (x-2/2) + RB (x-2) 0 = -6x + 6 + 12.4x - 24.8 0=+6.4x - 18.8 6.42 = 18.8 1. K = 18.8 .. K = 2,9375m ``` ## 18.2. STRESSES IN A THICK CYLINDRICAL SHELL Fig. 18.1 (a) shows a thick cylinder subjected to a internal fluid pressure. Fig. 18.1 Let r_2 = External radius of the cylinder, r_1 = Internal radius of the cylinder, and L = Length of cylinder. Consider an elementary ring of the cylinder of radius x and thickness dx as shown in Fig. 18.1 (b) and 18.2. Let p_x = Radial pressure on the inner surface of the ring $p_x + dp_x$ = Radial pressure on the outer surface of the ring σ_x = Hoop stress induced in the ring. Fig. 18.2 Take a longitudinal section x-x and consider the equilibrium of half of the ring of Fig. 18.2 as shown in Fig. 18.2 (a) or in Fig. 18.2 (b). Fig. 18.2 (a) Fig. 18.2 (b) ...(ii) Bursting force $$\begin{split} &= p_x \left(2xL\right) - \left(p_x + dp_x\right) \times 2\left(x + dx\right) \cdot L \\ &= 2L \left[p_x \cdot x - \left(p_x \cdot x + p_x \cdot dx + xdp_x + dp_x \cdot dx\right)\right] \\ &= 2L \left[-p_x \cdot dx - x \cdot dp_x\right] & \text{(Neglecting } dp_x \cdot dx \text{ which is a small quantity)} \\ &= -2L \left(p_x dx + x \cdot dp_x\right) & \dots(i) \end{split}$$ Resisting force = Hoop stress × Area on which it acts = $\sigma_x \times 2dx$. L Equating the resisting force to the bursting force, we get $$\sigma_{x} \times 2dx \cdot L = -2L \left(p_{x} \cdot dx + x \cdot dp_{x} \right)$$ $$\sigma_{x} = -p_{x} - x \frac{dp_{x}}{dx} \qquad \dots(iii)$$ or The longitudinal strain at any point in the section is constant and is independent of the radius. This means that cross-sections remain plane after straining and this is true for sections, remote from any end fixing. As longitudinal strain is constant, hence longitudinal stress will also be constant. Let $\sigma_2 = \text{Longitudinal stress.}$ Hence at any point at a distance x from the centre, three principal stresses are acting: They are: - (i) the radial compressive stress, p_x - (ii) the hoop (or circumferential) tensile stress, o. - (iii) the longitudinal tensile stress σ_2 . The longitudinal strain (e_2) at this point is given by, $$e_2 = \frac{\sigma_2}{E} - \frac{\mu \sigma_x}{E} + \frac{\mu p_x}{E}$$ But longitudinal strain is constant. $$\frac{\sigma_2}{E} - \frac{\mu \sigma_x}{E} + \frac{\mu p_x}{E} = \text{constant}$$ But σ_2 is also constant, and for the material of the cylinder E and μ are constant. $$\therefore \quad \sigma_x - p_x = \text{constant}$$ = 2a where a is constant $$\sigma_x = p_x + 2a$$ Equating the two values of σ_x given by equations (iii) and (iv), we get $$p_{x} + 2a = -p_{x} - x \frac{dp_{x}}{dx}$$ or $$x \cdot \frac{dp_{x}}{dx} = -p_{x} - p_{x} - 2a = -2p_{x} - 2a$$ or $$\frac{dp_{x}}{dx} = -\frac{2p_{x}}{x} - \frac{2a}{x} = \frac{-2(p_{x} + a)}{x}$$ or $$\frac{dp_{x}}{(p_{x} + a)} = -\frac{2dx}{x}$$ Integrating the above equation, we get $$\log_e (p_x + a) = -2\log_e x + \log_e b$$ where log b is a constant of integration. :: The above equation can also be written as $$\log_e (p_x + a) = -\log_e x^2 + \log_e b$$ $$= \log_e \frac{b}{x^2}$$ $$p_x + a = \frac{b}{x^2}$$ $$p_x = \frac{b}{x^2} - a \qquad \dots (18.1)$$ or Substituting the values of p_x in equation (iv), we get $$\sigma_x = \frac{b}{x^2} - a + 2a = \frac{b}{x^2} + a$$...(18.2) The equation (18.1) gives the radial pressure p_x and equation (18.2) gives the hoop stress at any radius x. These two equations are called *Lame's equations*. The constants 'a' and 'b' are obtained from boundary conditions, which are: (i) at $x = r_1$, $p_x = p_0$ or the pressure of fluid inside the cylinder, and (ii) at $x = r_2$, $p_x = 0$ or atmosphere pressure. After knowing the values of 'a' and 'b', the hoop stress can be calculated at any radius. 4(a) ## EXPRESSION FOR LONGITUDINAL STRESS Consider a thin cylindrical vessel subjected to internal fluid pressure. The longitudinal stress will be set up in the material of the cylinder, if the bursting of the cylinder takes place along the section AB of Fig. (a). The longitudinal stress (σ_2) developed in the material is obtained as: Let p = Internal pressure of fluid stored in thin cylinder d = Internal diameter of cylinder t =Thickness of the cylinder σ_2 = Longitudinal stress in the material. The bursting will take place if the force due to fluid pressure acting on the ends of the cylinder is more than the resisting force due to longitudinal stress (σ_2) developed in the material as shown in Fig. 17.4 (b). In the limiting case, both the forces should be equal. Force due to fluid pressure $= p \times \text{Area on which } p$ is acting $$= p \times \frac{\pi}{4} d^2$$ Resisting force = $\sigma_2 \times \text{Area on which } \sigma_2 \text{ is acting}$ $$= \sigma_2 \times \pi d \times t$$.. Hence in the limiting case Force due to fluid pressure = Resisting force $$p \times \frac{\pi}{4} d^2 = \sigma_2 \times \pi d \times t$$ $$\sigma_2 = \frac{p \times \frac{\pi}{4} d^2}{\pi d \times t} = \frac{pd}{4t}$$ The stress σ_2 is also tensile. 4(b) ## EXPRESSION FOR CIRCUMFERENTIAL STRESS (OR HOOP STRESS) Consider a thin cylindrical vessel subjected to an internal fluid pressure. The circumferential stress will be set up in the material of the cylinder, if the bursting of the cylinder takes place as shown in Fig. (a). The expression for hoop stress or circumferential stress (σ_i) is obtained as given below. Let p = Internal pressure of fluid d = Internal diameter of the cylinder t = Thickness of the wall of the cylinder σ_1 = Circumferential or hoop stress in the material. Fig. 17.3 The bursting will take place if the force due to fluid pressure is more than the resisting force due to circumferential stress set up in the material. In the limiting case, the two force should be equal. Force due to fluid pressure $$= p \times \text{Area on which } p \text{ is acting}$$ $= p \times (d \times L)$...(i) $(\because p \text{ is acting on projected area } d \times L)$ Force due to circumferential stress $$\begin{split} &= \sigma_1 \times \text{Area on which } \sigma_1 \text{ is acting} \\ &= \sigma_1 \times (L \times t + L \times t) \\ &= \sigma_1 \times 2Lt = 2\sigma_1 \times L \times t \end{split} \qquad ...(ii)$$ Equating (i) and (ii), we get $$\begin{aligned} p \times d \times L &= 2\sigma_1 \times L \times t \\ \sigma_1 &= \frac{pd}{2t} \text{ (cancelling } L \text{)} \end{aligned}$$ 1. Circumferential stress, σ_c : $$\sigma_{C} = (p \times d) / (2 \times t)$$ = $(1.2 \times 1000) / (2 \times 12)$ = $50 \text{ N/mm} = 50 \text{ MPa}$ (Tensile). 2. Longitudinal stress, σ_L : $$\sigma_{L} = (p \times d) / (4 \times t)$$ $$= \sigma_{C} / 2 = 50 / 2$$ $$= 25 \text{ N/mm} = 25 \text{ MPa (Tensile)}.$$ 3. Circumferential strain, $$\varepsilon_c$$: $$\varepsilon_c = \frac{(p \times d)}{(4 \times t)} \times \frac{(2 - \mu)}{E}$$ $$= \frac{(1.2 \times 1000)}{(4 \times 12)} \times \frac{(2 - 0.3)}{200 \times 10^3}$$ $$= \underline{2.125 \times 10^{-04}} \text{ (Increase)}$$ Change in diameter, $$\delta d = \epsilon_c \times d$$ = $2.125 \times 10^{-04} \times 1000 = \underline{0.2125} \text{ mm (Increase)}.$ $(p \times d) \quad (1-2 \times \mu)$ 4. Longitudinal strain: $\varepsilon_L = \frac{(p \times d)}{(4 \times t)} \times \frac{(1 - 2 \times \mu)}{E}$ $$= \frac{(1.2 \times 1000)}{(4 \times 12)} \times \frac{(1 - 2 \times 0.3)}{200 \times 10^{3}}$$ $$= \underline{5 \times 10^{.05}} \text{ (Increase)}$$ Change in length = $\epsilon_L \times L = 5 \times 10^{-05} \times 3000 = \underline{0.15}$ mm (Increase). Volumetric strain, $$\frac{dv}{V}$$: $\frac{dv}{V} = \frac{(p \times d)}{(4 \times t) \times E} \times (5 - 4 \times \mu)$ $$= \frac{(1.2 \times 1000)}{(4 \times 12) \times 200 \times 10^{3}} \times (5 - 4 \times 0.3)$$ $$= 4.75 \times 10^{-4} \text{ (Increase)}$$ = $$4.75 \times 10^{-4} \times \frac{\pi}{4} \times 1000^{2} \times 3000$$ = $1.11919 \times 10^{6} \text{ mm}^{3} = 1.11919 \times 10^{-3} \text{ m}^{3}$ = 1.11919Litres . Dala: d== 500 mm; : . r== 250 mm; t= 75 mm =- 7, = 250+75 Px = 6 N/mm2 Sun: Internal pressure at any radius, x Px: b - 9 when x: 12=250mm, Px=6N/mm2 i.e 6 = 6 - a - (i) when x = \$1 : 325 mm, Px = 0. $0 = \frac{b}{32c^2} - a - (ii)$ Egn (1) - (11) gind, 6= 5 - 5 b=918478.261 Substituting b' in earn (i), a=8.696 thoop stress at any radius, 11, 1x = b + q fx = 918478.261 + 8.696 Mean radius, rm = 82+1 = 250+325 = 287.5mm when x= r2 = 250 mm; fx: 1200 i.e., thop stress at the liner circumference \$250 = 918478.261 +8-696 = 23.4 N/mm² 2502 when 11= rm= 287-5 mm, Ac: +2875 i.e, thoup stress at the mean radius 1287.5 = 918478.261 +8-696 = 19-81 N/mm² 287.52 when x= 71: 325mm, fi = +325 1.e., Hoop stress at the outer corcumference +325 = 918478.261 + 8.696 = 17.4 N/mm² 3252 Radial pressure at the mean circumference 9250= 23.4N/mm² Hoop strus distribution (1) 19.87N/mm2 (temple 17.4 N/mm = 292-14-4 N/mm 2 P287.5 = 2.416 N/mut 6N mm Radial pressure distribution (Compressive) Radius