

[CI] [CCI] [HOD]

 $[{\rm HOD}]$

TURBOMACHINES (18ME54) IAT-1 SOLUTIONS

Derive the condition for maximum hydraulic efficiency and write the expression for maximum hydraulic efficiency.

WORK DONE AND HYDRAULIC EFFICIENCY BY A PELTON WHEEL

 C_b which is also called $Co-eff$ icient of blade is defined as ratio of V_{r_2} to V_{r_1}

$$
C_b = \frac{V_{r_2}}{V_{r_1}}
$$

If C_h is considered in the derivation, then the equation (3) will be,

$$
W = U(V_1 - U)(1 + C_b cos \beta_2)
$$

\n
$$
W.K.T.\eta_H = \frac{W}{\frac{1}{2}V_1^2}
$$

\n
$$
\eta_H = \frac{U(V_1 - U)(1 + C_b cos \beta_2)}{\frac{1}{2}V_1^2}
$$

\n
$$
\eta_H = \frac{2U(V_1 - U)(1 + C_b cos \beta_2)}{V_1^2}
$$
 (4)

Condition for MAXIMUM HYDRAULIC EFFICIENCY

The condition for maximum efficiency can be obtained by using MAXIMA condition

$$
\frac{d\eta_H}{dU} = 0
$$
\n
$$
\frac{d\eta_H}{dU} = \frac{d}{dU} \left(\frac{2(UV_1 - U^2)(1 + C_b \cos \beta_2)}{V_1^2} \right)
$$
\n
$$
\frac{d\eta_H}{dU} = \frac{2(1 + C_b \cos \beta_2)}{V_1^2} \frac{d}{dU} (UV_1 - U^2)
$$
\n
$$
\frac{d\eta_H}{dU} = \frac{2(1 + C_b \cos \beta_2)}{V_1^2} \times (V_1 - 2U)
$$
\n
$$
\frac{2(1 + C_b \cos \beta_2)}{V_1^2} \times (V_1 - 2U) = 0
$$
\n
$$
\frac{2(1 + C_b \cos \beta_2)}{V_1^2} \neq 0
$$
\n
$$
\therefore (V_1 - 2U) = 0
$$
\n
$$
\Rightarrow V_1 = 2U
$$
\n
$$
\therefore U = \frac{1}{2}V_1 \longleftarrow \text{ for maximum} hyd radius eff c int of f of of
$$

Hydraulic efficiency is given by
\n
$$
\eta_H = \frac{2U(V_1-U)(1+C_b cos \beta_2)}{V_1^2}
$$

Substituting $V_1 = 2U$ in above equation

$$
\eta_H = \frac{2U(2U - U)(1 + C_b cos \beta_2)}{(2U)^2}
$$

$$
\eta_H = \frac{2U(U)(1 + C_b cos \beta_2)}{(2U)^2}
$$

$$
\eta_H = \frac{2U^2(1 + C_b cos \beta_2)}{4U^2}
$$

$$
\eta_{H_{MAX}}=\frac{1+C_{b}cos\beta_{2}}{2}
$$

This is the equation for maximum hydraulic efficiency

$$
If C_b = 1, then
$$

$$
\eta_{H_{max}} = \frac{1 + \cos \beta_2}{2}
$$

 \vert It can be seen from the above equation that for η_H to be 1, β_2 should be 0°

A three jet PELTON WHEEL is required to generate 10000 kW under a head of 400m. The blade angle at outlet is 15° and the reduction in the relative velocity while passing over the blade is 5%. If the overall efficiency is 80%, $CV = 0.98$, $\phi = 0.46$, then find: (i) Diameter of jet (ii) Total flow (iii) Force excerted by jets on blades

SOLUTION

DATA $n=3$ SP=10000 kW H=400 ^m β2=15*°* $Cb = 0.95$ η _{$o=$} 0.8 $Cv = 0.98$ $\phi = 0.46$

TO FIND $d=$? $Q=$? $F=$?

a) Total flow (Q)

$$
\eta_o = \frac{SP}{\rho g Q H} \Rightarrow 0.8 = \frac{10000 \times 10^3}{1000 \times 9.81 \times Q \times 400} \Rightarrow Q = 3.18 \frac{m^3}{s}
$$

b) Diameter of Jet:

$$
Q = n\frac{\pi}{4}d^2V_1
$$

$$
V_1 = C_v\sqrt{2gH} \implies 0.98 \times \sqrt{2 \times 9.81 \times 400} \implies V_1 = 86.81 \frac{m}{s}
$$

$$
3.18 = 3 \times \frac{\pi}{4} \times d^2 \times 86.81 \implies d = 0.125m
$$

 $\boldsymbol{\pi}$

c) Force exerted by each jet

$$
F_{each\ jet} = \frac{\dot{m}(V_{W_1} \pm V_{W_2})}{No\ of\ jets} = \frac{\rho Q(V_{W_1} \pm V_{W_2})}{n}
$$

INLET VELOCITY TRIANGLE

$$
VW1 = V1 = 86.81ms
$$

$$
U = \phi \sqrt{2gH} \Rightarrow U = 0.46\sqrt{2 \times 9.81 \times 400} \Rightarrow U = 40.75 \frac{m}{s}
$$

$$
V_{r_1} = V_1 - U = 86.81 - 40.75 = 46.06 \frac{m}{s}
$$

ASSUMING THE OUTLET VELOCITY TRIANGLE AS

Since C_b is given, $V_{r_2} = C_b V_{r_1} \Longrightarrow V_{r_2} = 0.95 \times 46.06 = 43.757 \frac{m}{s}$

From outlet velocity triangle,

$$
\cos \beta_2 = \frac{U + V_{W_2}}{V_{r_2}}
$$

$$
U + V_{W_2} = V_{r_2} \cos \beta_2
$$

$$
V_{W_2} = V_{r_2} \cos \beta_2 - U \Rightarrow (43.757 \times \cos 15) - 40.75
$$

$$
V_{W_2} = 1.51 \frac{m}{s}
$$

Since V_{W_2} is positive the assumed velocity triangle is correct.

$$
\therefore F_{each\,jet} = \frac{\dot{m}(V_{W_1} \pm V_{W_2})}{No\ of\,jets} = \frac{\rho Q(V_{W_1} \pm V_{W_2})}{n}
$$

$$
F_{each\,jet} = \frac{1000 \times 3.18 \times (86.81 + 1.51)}{3}
$$

$$
F_{each\,jet} = 93619.2 \text{ N}
$$

A double jet PELTON WHEEL is required to generate 7500 kW when the available head at the base of the nozzle is 400m. The jet is deflected through 165° and the relative velocity of the jet is reduced by 15% in passing over the buckets. Determine (i) Diameter of jet (ii) Total flow (iii) Force excerted by jets on blades.

Assume Generator efficiency of 95%, Overall efficiency as 80%, blade speed ratio as 0.47, nozzle velocity c-efficient as 0.98.

 $7. n = 2$ β = 7500kW $\theta = 165^\circ$; $\beta_e = 180^\circ$ 165 = 15° $C_4 = 1 - 0.95$ = 8.85 $\begin{array}{ccc} \eta_3 & 2 & 95\% & 2 & 0.95 \\ \eta_{0} & 80\% & 2 & 0.8 \\ \phi_{0} & 0.47 & 0.8 \end{array}$ Cvz 0.98 $\frac{y}{3}$ = $\frac{y}{3}$ => $\cos x$ = \therefore SP = $\frac{P_2}{P_3}$ = 7500 $\times 10^{-5}$ $SP = 7894736 - 84210$ $SP = 7894.73km$ <u>io</u> Total flow 0.2 $\frac{59}{69893}$ 3 0.8 = $\frac{7894736.842}{100039.81098100}$ $Q = 8.514 \frac{m}{11}$ $\phi = \frac{\pi}{4}$. $n \cdot d^2$. v_n $V_1 = C_V \sqrt{\frac{a_3}{l}}$
= 0.98 $\sqrt{\frac{d}{d}} \times 9.81 \times 400$ $V_1 = 86.81 m/s$ \therefore d. 514 = 3.14 x d x d² x 86.81 d= 0.1358m is the diameter of jet \overline{u} ; f_{out} j_{ϵ} = molvin $f_{\vee \omega_{\epsilon}}$) => fq a lv_w, $f_{\vee \omega_{\epsilon}}$ Intet velocity triangle for Petton wheel will be given an

The following data refers to a hydraulic power plant. Tail race level to reservoir level $= 175$ m. Head loss in penstock = 17.5m. Flow rate = 2.5 m^3/s, Head utilized by the turbine =135m, Leakage losses = 100 litre/s, Power loss due to mechanical friction= 75 kW. Find (i) Hydraulic Efficiency, (ii) Volumetric efficiency (iii) Overall Efficiency (iv) Mechanical efficiency (v) Brake power

 H_g = 175 m $\phi_f^2 = 17.5m$
 $\phi_f^2 = 17.5m$
 $\theta_{f_{\text{obs}}}^2 = 17.5m$
 $\theta_{f_{\text{obs}}}^2 = 100 \frac{l}{s}$ P_{low} = 75 kw = 75000 W 9) Hydraulic Efficiency, η_{μ} = $\frac{B \cos \theta}{N e^{\mu}}$ which by turbine = $\frac{H_{e}}{H}$ $\mu = \frac{135}{157.5}$ $\psi_{H=2} = 0.8571 = 85.71\%$ 1) Volumetric Efficiency, Mr = <u>Actual vol of water Studing Autoine</u>
Theoretical vol. of worker Autoine dubine $\psi = \frac{\phi - \phi_{b11}}{\phi} = \frac{d.5 - 0.1}{d.5} = 0.96 = 96\%$ 1) Mechanical Efficiency, *Joseph Rayt Pawer* by Turbine Actual hydraube efficiency, find = n/v x n/m = = 0.96 b 0.857 = 0.822 = 82 9.11 μ_{act} = Power developed by tweeters $\mu_{\text{sub}} = \frac{P_{\text{hub}}}{\sqrt{x} q x Q_{\text{sub}} x H}}$ 3 0.822 = $\frac{P_{\text{hub}}}{1000 \times 7 R}$ μ_{sub} 1575 $944 = 3048123.96 \text{ W}$ $SP = P_{total} - P_{101}$
 $= 75$ S_{P} = $\frac{2048.12}{809}$ $\frac{2040.623 \text{ km}}{2000.623 \text{ km}}$ \int mech = 0.9975 = 97.75 % A d) overall efficiency, $y_0 = y_{nct} \times y_{nct}$ $= 0.8199 = 81.99\%$ e) Brake Ponser = SP = 8040.62 kW

Steam flows through a nozzle with a velocity of 450 m/s at a direction which is inclined at 16° to the wheel tangent. Steam comes out of the nozzle with a velocity of 100 m/s in the direction of 110° with the direction of blade motion. The blades are equiangular and the steam flow rate is 10 kg/s. Find (i) Power developed (ii) Axial thrust (iii) Blade efficiency

Solution : Given: $V_1 = 450 \text{ m/s}, \alpha_1 = 16^\circ, V_2 = 100 \text{ m/s}, \alpha_2^1 = 110^\circ, \alpha_2 = 70^\circ \beta_1 = \beta_2$, $m = 10 \text{ kg/s}$. Find: P, P₀ F₂, η_{h} , C_h.

Graph construction: For the selected scale, draw V₁ w.r.t α_1 and V₂ w.r.t α_2 and find the value of V_{f1} & V_{f2} . To get β_1 and β_2 , produce V_{f2} in backward direction & draw the line from the apex 'A' of inlet velocity triangle which cuts at V_{f2} produced backward at B.

From Graph: $U = 167 \text{ m/s}, V_{r1} = 293 \text{ m/s}, V_{r2} = 222 \text{ m/s}$

$$
\beta_1 = \beta_2 = 25^\circ
$$
, $\Delta V_f = 30.1$ m/s, $\Delta V_u = 466.8$ m/s.

(i) Power developed, $P = \frac{\dot{m}}{g} \times U \Delta V_u = \frac{10 \times 167 \times 466.8}{1000} = 780$ kW

(ii) Power loss to friction : $P_f = \frac{m}{g} x \Delta h_f$

 Δh_f = Pressure Energy loss due to friction in the rotor = $1/2g_c[(V_f^2 - V_f^2)]$ $\Delta h_f = \frac{(293^2 - 222.0^2)}{2 \times 1000} = 18.28$ kJ/kg Power loss, P_f = m Δh_f = 10 x 18.28 = 182.8 kW (iii) Axial thrust, $F_a = \frac{\dot{m}}{g_a} \Delta V_f = \frac{10 \times 30.1}{1} = 301 \text{ N}$

(iv) Rotor Efficiency: $\eta_b = \frac{2U \Delta V_u}{V^2} = \frac{2 \times 167 \times 466.8}{450^2} = 77\%$

(v) Blade velocity coefficient: $C_b = \frac{V_{r2}}{V} = \frac{222}{293} = 0.758$