USN					

Internal Assessment Test 2 – Dec 2021

Sub:	: TURBO MACHINES Sub Code:						18ME54	ME54 Branch: ME		ECHAN.	ICAL
Date:	16/12/2021 Duration: 90 min's Max Marks: 50 Sem/Sec: 5th Sem A							n A &	В		BE
									MARK	s CO	RBT
1.	Answer all questions 1. Derive the condition for maximum hydraulic efficiency of pelton wheel and write the expression for maximum hydraulic efficiency.								[10]	CO4	L
2.	2. A three jet PELTON WHEEL is required to generate 10000 kW under a head of 400m. The blade angle at outlet is 15° and the reduction in the relative velocity while passing over the blade is 5%. If the overall efficiency is 80%, $CV = 0.98, \phi = 0.46$, then find: (i) Diameter of jet (ii) Total flow (iii) Force excerted by jets on blades							CO4	L3		
3.	A double jet PELTON WHEEL is required to generate 7500 kW when the available head at the base of the nozzle is 400m. The jet is deflected through 165° and the relative velocity of the jet is reduced by 15% in passing over the buckets. Determine (i) Diameter of jet (ii) Total flow (iii) Force excerted by jets on blades. Assume Generator efficiency of 95%, Overall efficiency as 80%, blade speed ratio as 0.47, nozzle velocity c-efficient as 0.98.						s. es.	[10]	CO4	L3	
4.	The following data refers to a hydraulic power plant. Tail race level to reservoir level = 175m. Head loss in penstock = 17.5m. Flow rate = $2.5 \frac{m^3}{s}$, Head utilized by the turbine =135m, Leakage losses = $100 \frac{litre}{s}$, Power loss due to mechanical friction= 75 kW. Find (i) Hydraulic Efficiency, (ii) Volumetric efficiency (iii) Overall Efficiency (iv) Mechanical efficiency (v) Brake power						[10]	CO4	L3		
5.	Steam flows to inclined at 16 of 100 m/s in are equiangular Axial thrust (i	o to the who the direction ar and the	eel tangent. on of 110° steam flow	Steam comes with the direc	out o	of the nozzl of blade mo	e with a velocation. The bla	city ides	[10]	CO5	L3

[CI] [CCI] [HOD]

USN					

Internal Assessment Test 2 – Dec 2021

Sub:	TURBO MAC	HINES		u Assessment		Sub Code:	18ME54	Branch:	MEC	HANI	CAL
Date:	16/12/2021	16/12/2021 Duration: 90 min's Max Marks: 50 Sem/Sec: 5th Sem A						n A &B		OBE	
								MA	RKS	CO	RBT
1.	Derive the cormaximum hyd Diagram- 3 M Derivation- 7	lraulic effic Iarks	naximum h	<u>all questions</u> ydraulic effici	ency	and write tl	ne expression	for [10]	CO4	L
2.	A three jet PI 400m. The blapassing over then find: (i) I Velocity Tria Diameter- 2 Mark Force- 2 Mark	ide angle at he blade is Diameter of ngle- 2 Ma Marks	outlet is 15 5%. If the jet (ii) Total	overall efficies	ction ncy i	in the relatives 80%, CV	we velocity where $0.98, \phi = 0$	hile .46,	10]	CO4	L3
3.							10]	CO4	L3		
4.	The following = 175m. Head turbine =135m 75 kW. Find Efficiency (iv) Hydraulic Ef Volumetric et Overall Effic Mechanical et Brake power	data refers l loss in pe n, Leakage (i) Hydra) Mechanic ficiency- 2 fficiency- 2 iency- 2 M fficiency- 2 - 2 Marks	nstock = 17 losses = 10 ulic Efficie al efficience Marks 2 Marks arks 2 Marks	7.5m. Flow rate of the second	te = 2 loss lumer	$2.5 \frac{m^3}{s}$, Headue to mectric efficient	d utilized by hanical friction acy (iii) Ove	the on= erall	10]	CO4	L3
5.	Steam flows inclined at 16 of 100 m/s in are equiangul. Axial thrust (i Velocity Tria Power- 1 Mat Thrust- 1 Ma Blade efficier	o to the who the direction ar and the ii) Blade ef ngle Const rk	eel tangent. on of 110° steam flow ficiency cruction- 7	Steam comes with the direct rate is 10 kg.	out o	of the nozzl of blade mo	e with a velocation. The bla	city des	10]	CO5	L3

Derive the condition for maximum hydraulic efficiency and write the expression for maximum hydraulic efficiency.

WORK DONE AND HYDRAULIC EFFICIENCY BY A PELTON WHEEL

W.K.T

$$\eta_{H} = \frac{\dot{m}(V_{W_{1}}U_{1} \pm V_{W_{2}}U_{2})}{\rho g Q H}$$

Also,
$$\dot{m} = \rho \times Q$$

$$\eta_H = \frac{V_{W_1}U_1 \pm V_{W_2}U_2}{gH}$$

gH = Potential Energy

But in turbine, all potential energy is converted to kinetic energy

$$\therefore gH = \frac{1}{2}V_1^2$$

$$\therefore \eta_H = \frac{U(V_{W_1} \pm V_{W_2})}{\frac{1}{2}V_1^2}$$

From OUTLET VELOCITY TRIANGLE

$$V_{W_2} = V_{r_2} cos \beta_2 - U$$

$$V_{W_2} = V_{r_1} cos \beta_2 - U - (1)$$

From INLET VELOCITY TRIANGLE

$$V_{r_1} = V_1 - U -$$
 (2)

(2) in (1) implies

$$V_{W_2} = (V_1 - U)\cos\beta_2 - U$$

$$V_{W_1} = V_1$$

$$U(V_{W_1} \pm V_{W_2}) = W$$

Since V_{W_2} and V_{W_1} are in opposite directions

$$W = U(V_{W_1} + V_{W_2})$$

$$W = U(V_1 + (V_1 - U)\cos\beta_2 - U)$$

$$W = U((V_1 - U) + (V_1 - U)\cos\beta_2)$$

$$W = U(V_1 - U)(1 + \cos\beta_2) - - - (3)$$

It was assumed that $V_{r_1} = V_{r_2}$

Due to losses in blade, $V_{r_1} \neq V_{r_2}$

Also
$$V_{r_2} < V_{r_1}$$

 \therefore a new term C_b is defined

 C_b which is also called Co-efficient of blade is defined as ratio of V_{r_2} to V_{r_1}

$$C_b = \frac{V_{r_2}}{V_{r_1}}$$

If C_b is considered in the derivation, then the equation (3) will be,

$$W = U(V_1 - U)(1 + C_b \cos \beta_2)$$

$$W.K.T \eta_H = \frac{W}{\frac{1}{2}V_1^2}$$

$$\eta_{H} = \frac{U(V_{1} - U)(1 + C_{b}cos\beta_{2})}{\frac{1}{2}V_{1}^{2}}$$

$$\eta_{H} = \frac{2U(V_{1} - U)(1 + C_{b}cos\beta_{2})}{V_{1}^{2}} \quad ----- (4)$$

Condition for MAXIMUM HYDRAULIC EFFICIENCY

The condition for maximum efficiency can be obtained by using MAXIMA condition

$$\begin{split} \frac{d\eta_H}{dU} &= 0\\ \frac{d\eta_H}{dU} &= \frac{d}{dU} \left(\frac{2(UV_1 - U^2)(1 + C_b cos\beta_2)}{V_1^2} \right)\\ \frac{d\eta_H}{dU} &= \frac{2(1 + C_b cos\beta_2)}{V_1^2} \frac{d}{dU} (UV_1 - U^2) \end{split}$$

$$\frac{d\eta_H}{dU} = \frac{2(1 + C_b cos \beta_2)}{V_1^2} \times (V_1 - 2U)$$

$$\frac{2(1+C_bcos\beta_2)}{V_1^2}\times (V_1-2U)=0$$

$$\frac{2(1+C_b cos\beta_2)}{V_1^2}\neq 0$$

$$\therefore (V_1-2U)=0$$

$$\Rightarrow V_1 = 2U$$

$$\therefore U = \frac{1}{2}V_1$$
 This is the condition for maximum hydraulic effciency

Hydraulic efficiency is given by

$$\eta_{H} = \frac{2U(V_{1} - U)(1 + C_{b}cos\beta_{2})}{V_{1}^{2}}$$

Substituting $V_1 = 2U$ in above equation

$$\eta_{H} = \frac{2U(2U - U)(1 + C_{b}cos\beta_{2})}{(2U)^{2}}$$

$$\eta_{H} = \frac{2U(U)(1 + C_{b}cos\beta_{2})}{(2U)^{2}}$$

$$\eta_{H} = \frac{2U^{2}(1 + C_{b}cos\beta_{2})}{4U^{2}}$$

$$\eta_{H_{MAX}} = \frac{1 + C_b cos \beta_2}{2}$$

This is the equation for maximum hydraulic efficiency

If
$$C_b = 1$$
, then

$$\eta_{H_{max}} = \frac{1 + \cos \beta_2}{2}$$

It can be seen from the above equation that for η_H to be $1,\beta_2$ should be 0°

A three jet PELTON WHEEL is required to generate 10000 kW under a head of 400m. The blade angle at outlet is 15° and the reduction in the relative velocity while passing over the blade is 5%. If the overall efficiency is 80%, CV = 0.98, $\varphi = 0.46$, then find: (i) Diameter of jet (ii) Total flow (iii) Force excerted by jets on blades

SOLUTION

DATA

$$n=3$$
 $SP=10000 \ kW$
 $H=400 \ m$
 $\beta 2=15^{\circ}$
 $Cb=0.95$
 $\eta o=0.8$
 $Cv=0.98$
 $\phi=0.46$

TO FIND
 $d=?$
 $Q=?$
 $F=?$

a) Total flow (Q)

$$\eta_o = \frac{SP}{\rho gQH} \Longrightarrow 0.8 = \frac{10000 \times 10^3}{1000 \times 9.81 \times Q \times 400} \Longrightarrow \mathbf{Q} = \mathbf{3.18} \frac{\mathbf{m}^3}{\mathbf{s}}$$

b) <u>Diameter of Jet:</u>

$$Q = n\frac{\pi}{4}d^2V_1$$

$$V_1 = C_v\sqrt{2gH} \implies 0.98 \times \sqrt{2 \times 9.81 \times 400} \implies V_1 = 86.81\frac{m}{s}$$

$$3.18 = 3 \times \frac{\pi}{4} \times d^2 \times 86.81 \implies d = \mathbf{0}.\mathbf{125}m$$

c) Force exerted by each jet

$$F_{each \ jet} = \frac{\dot{m}(V_{W_1} \pm V_{W_2})}{No \ of \ jets} = \frac{\rho Q(V_{W_1} \pm V_{W_2})}{n}$$

INLET VELOCITY TRIANGLE

VW1=V1=86.81ms

$$U = \phi \sqrt{2gH} \implies U = 0.46\sqrt{2 \times 9.81 \times 400} \implies U = 40.75 \frac{m}{s}$$

$$V_{r_1} = V_1 - U = 86.81 - 40.75 = 46.06 \frac{m}{s}$$

ASSUMING THE OUTLET VELOCITY TRIANGLE AS

Since
$$C_b$$
 is given, $V_{r_2} = C_b V_{r_1} \Longrightarrow V_{r_2} = 0.95 \times 46.06 = 43.757 \frac{m}{s}$

From outlet velocity triangle,

$$\cos \beta_{2} = \frac{U + V_{W_{2}}}{V_{r_{2}}}$$

$$U + V_{W_{2}} = V_{r_{2}} \cos \beta_{2}$$

$$V_{W_{2}} = V_{r_{2}} \cos \beta_{2} - U \Longrightarrow (43.757 \times \cos 15) - 40.75$$

$$V_{W_{2}} = \mathbf{1.51} \frac{m}{s}$$

Since V_{W_2} is positive the assumed velocity triangle is correct.

$$F_{each jet} = \frac{\dot{m}(V_{W_1} \pm V_{W_2})}{No \ of \ jets} = \frac{\rho Q(V_{W_1} \pm V_{W_2})}{n}$$
$$F_{each jet} = \frac{1000 \times 3.18 \times (86.81 + 1.51)}{3}$$
$$F_{each jet} = \frac{93619.2 \, N}{3}$$

3

Assume Generator efficiency of 95%, Overall efficiency as 80%, blade speed ratio as 0.47, nozzle velocity c-efficient as 0.98.

The following data refers to a hydraulic power plant. Tail race level to reservoir level = 175m. Head loss in penstock = 17.5m. Flow rate = 2.5 m^3/s, Head utilized by the turbine =135m, Leakage losses = 100 litre/s, Power loss due to mechanical friction= 75 kW. Find (i) Hydraulic Efficiency, (ii) Volumetric efficiency (iii) Overall Efficiency (iv) Mechanical efficiency (v) Brake power

Hg : 175m	
hy = 17.5m H= H 0 = d.5m ³ /s 15 He = 13.5m H= =	y - h,
p = d.5m3/3	25 - m's
He = 135m 14 =	157.5m
Ploss = 100 L/s = 100 x	10° = 0.1 mg/s
Ploss = 75 kw 2 75000 W	
a) Hydraulic Efficiency, Mr = -	Heard whitseed by teetine = He Not heard H
1. = 135	Pulls 11
L" 157.4	LE SEE STATE
1 = 135 157. r 1/4 = 0.	851) = 85.71 %
1) Volumetric Efficiency, My = _	Actual vol of water Stating Autine Theoretecial vol. of motor staining Autine
$\eta_{v} = \frac{\varphi - \varphi_{loss}}{\varphi} = \frac{25}{2}$	- 0-1 = 0.96 = 96%
c) Mechanical Efficiency, [medi=	
Actual hydraulic Officiency,	Innet = Nv x NH
= 0.96 % 0.857 = 0.8	12 . 82 9.1.
A - Post developed	ly tuchine
Mact = Pours developed fx gx Partua) b H
Mast = Phub > 0	1000 x 9.81 6 2.40 157.5
Paul = 3048123.96W	
20401171	
SP = Prut - Pros	
- 2048 12 - 75	
SP : 804 3040.623 kw	Imech = 0.9975 = 97.75 %

d) Overall efficiency, No = NHact X Nmech = 0.822 × 0.497 = 81.99%

e) Brake Power = CP = 8040.62 km

Steam flows through a nozzle with a velocity of 450 m/s at a direction which is inclined at 16° to the wheel tangent. Steam comes out of the nozzle with a velocity of 100 m/s in the direction of 110° with the direction of blade motion. The blades are equiangular and the steam flow rate is 10 kg/s. Find (i) Power developed (ii) Axial thrust (iii) Blade efficiency

Solution: Given:
$$V_1 = 450 \text{ m/s}$$
, $\alpha_1 = 16^{\circ}$, $V_2 = 100 \text{ m/s}$, $\alpha_2^1 = 110^{\circ}$, $\alpha_2 = 70^{\circ}$ $\beta_1 = \beta_2$, $\dot{m} = 10 \text{ kg/s}$. Find: P, P_b, F_a, η_b , C_b.

Graph construction: For the selected scale, draw V_1 w.r.t α_1 and V_2 w.r.t α_2 and find the value of V_{f1} & V_{f2} . To get β_1 and β_2 , produce V_{f2} in backward direction & draw the line from the apex 'A' of inlet velocity triangle which cuts at V_{f2} produced backward at B.

Now measure β_1 and β_2 and find out the tangential velocity of rotor.

From Graph:
$$U = 167 \text{ m/s}$$
, $V_{r1} = 293 \text{ m/s}$, $V_{r2} = 222 \text{ m/s}$

$$\beta_1 = \beta_2 = 25^\circ$$
, $\Delta V_f = 30.1 \text{ m/s}$, $\Delta V_u = 466.8 \text{ m/s}$.

(i) Power developed,
$$P = \frac{\dot{m}}{g_c} \times U \Delta V_u = \frac{10 \times 167 \times 466.8}{1000} = 780 \text{ kW}$$

(ii) Power loss to friction :
$$P_f = \frac{\dot{m}}{g_c} x \Delta h_f$$

 Δh_f = Pressure Energy loss due to friction in the rotor = $1/2g_c[(V_{r1}^2 - V_{r2}^2)]$

$$\Delta h_f = \frac{(293^2 - 222.0^2)}{2 \times 1000} = 18.28 \text{ kJ/kg}$$

Power loss, $P_f = \dot{m} \Delta h_f = 10 \times 18.28 = 182.8 \text{ kW}$

(iii) Axial thrust,
$$F_a = \frac{\dot{m}}{g_c} \Delta V_f = \frac{10 \times 30.1}{1} = 301 \text{ N}$$

(iv) Rotor Efficiency:
$$\eta_b = \frac{2U \Delta V_u}{V_1^2} = \frac{2 \times 167 \times 466.8}{450^2} = 77\%$$

(v) Blade velocity coefficient:
$$C_b = \frac{V_{r2}}{V_{r1}} = \frac{222}{293} = 0.758$$