ANSWER KEY .
Internal Assessment Test 3 — Jan , 2022 30) CMRIT

Sub: Data Analytics using Python csol:jbe- 20MCA31
Date: | 25/01//2022 | Duration: 90, Ma)f 50 Sem: 111 | Branch: MCA
min’s | Marks:
1 What are the Steps in Visualization ? Explain with an example

Data Visualization :Steps involved in plotting a graph

» Define the x-axis and corresponding y-axis values as lists.

* Plot them on canvas using .plot() function.

» Give a name to x-axis and y-axis using .xlabel() and .ylabel() functions.
» Give atitle to your plot using .title() function.

» Finally, view the plot, using .show() function.

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

cars data = pd.read csv('Toyota.csv', index col=0,na values=["?2?",6"?2?22?"])

#removing missing values from the dataframe

cars _data.dropna(axis=0, inplace=True)

Scatter Plot

plt.scatter(cars data['Age'],cars data['Price'],c='red')
plt.title('Scatter plot of Price vs Age of the cars')
plt.xlabel ('Age (months) ')

plt.ylabel ('Price (Euros) ')

plt.show ()

Scatter plot of Price vs Age of the cars

30000 4

25000

20000 A

Price{Euras)
-

15000

10000 A

5000 4

Agelmonths)
Histogram

plt.hist (cars data['KM'])

1|Page

Out[3]:
(array ([92., 239., 331., 222., 111., 51., 25., 13., 10., 2.1),
array([1.000000e+00, 2.430090e+04, 4.860080e+04, 7.290070e+04,
9.720060e+04, 1.215005e+05, 1.458004e+05, 1.701003e+05,
1.944002e+05, 2.187001e+05, 2.430000e+051),
<BarContainer object of 10 artists>)

250

200

] SO0 piwladnlele] pi=Talnle el 20000y 250000y
Bar Plot (for categorical variables)

In [5]:
counts=[979, 120, 12]
fuelType = ('Petrol', 'Diesel', 'CNG')

index = np.arange (len (fuelType))

plt.bar (index, counts,color=['red', 'blue', 'cyan'l])
plt.title('Bar plot of fuel types')
plt.xlabel ('Fuel Types')
plt.ylabel ('frequency')
plt.xticks (index, fuelType, rotation = 0)
plt.show()

Bar plot of fuel types

1000

frequency
8
=]

g

T
Petrol Diesel CHIG
Fuel Types

What do you mean by Normalization and Standardization? Write any five differences

between them

Feature scaling is one of the most important data preprocessing step in machine learning. Algorithms that compute

the distance between the features are biased towards numerically larger values if the data is not scaled.

Tree-based algorithms are fairly insensitive to the scale of the features. Also, feature scaling helps machine learning,
and deep learning algorithms train and converge faster.

There are some feature scaling techniques such as Normalization and Standardization that are the most popular and

2|Page

at the same time, the most confusing ones.
Let’s resolve that confusion.

Normalization or Min-Max Scaling is used to transform features to be on a similar scale. The new point is
calculated as:

X_new = (X - X_min)/(X_max - X_min)

This scales the range to [0, 1] or sometimes [-1, 1]. Geometrically speaking, transformation squishes the n-
dimensional data into an n-dimensional unit hypercube. Normalization is useful when there are no outliers as it
cannot cope up with them. Usually, we would scale age and not incomes because only a few people have high
incomes but the age is close to uniform.

Standardization or Z-Score Normalization is the transformation of features by subtracting from mean and
dividing by standard deviation. This is often called as Z-score.

X_new = (X - mean)/Std

Standardization can be helpful in cases where the data follows a Gaussian distribution. However, this does not have
to be necessarily true. Geometrically speaking, it translates the data to the mean vector of original data to the origin
and squishes or expands the points if std is 1 respectively. We can see that we are just changing mean and standard

deviation to a standard normal distribution which is still normal thus the shape of the distribution is not affected.

Standardization does not get affected by outliers because there is no predefined range of transformed features.

Difference between Normalization and Standardization

S.NO. | Normalization Standardization
Minimum and maximum value of Mean and standard deviation is used for
1. features are used for scaling scaling.
It is used when features are of different | It is used when we want to ensure zero
2. scales. mean and unit standard deviation.
3. Scales values between [0, 1] or [-1, 1]. It is not bounded to a certain range.
4. It is really affected by outliers. It is much less affected by outliers.
Scikit-Learn provides a transformer
Scikit-Learn provides a transformer called standardscaler for
5. called minMaxscaler for Normalization. | standardization.
This transformation squishes the n- It translates the data to the mean vector of
dimensional data into an n-dimensional | original data to the origin and squishes or
6. unit hypercube. expands.
It is useful when we don’t know about It is useful when the feature distribution is
7. the distribution Normal or Gaussian.
It is a often called as Scaling It is a often called as Z-Score
8. Normalization Normalization.

Write the importance of self and __init__ () method. Give an example

i)Importance of ‘self’

Explicit reference to refer the current object, i.e the object which invoked the method
Used to create and initialize instance variables of a class i.e it creates the attribute for the class
‘self” reference must be used as a first parameter in all instance methods of a class otherwise

3|Page

the methods are known as simply “class methods”

Moreover, “self” is not a keyword and has no special meaning in Python. We can use any
name in that place. However, it is recommended not to use any name other than “self”
(merely a convention and for readability)

i) _init__() method

__init__() method helps in initializing the variable during the creation of object. Hence, it is
also called as ‘initializer method’ or Default Constructor.

Instance Methods and Static Methods
Instance / Regular methods require an instance (self) as the first argument and when the
method is invoked (bound), self is automatically passed to the method

Static methods are functions which do not require

instance but are part of class definitions.
When to use Static and Instance methods?

Instance methods Useful when method needs access to the values that are specific to the
instance and needs to call other methods that have access to instance specific values.

Write a Python program to demonstrate Data Visualization using Seaborn

#E1l. Write a Python program to demonstrate Doata Visualizetion using Seaborn

Scatter Plot

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

import seaborn as sns

atter plot af Price and oge with the regeression

® s eres fitline
cars_data = pd.read_csv('Toyota.csv', index_col=0, na_values«["22" "p322%]

cars_date.dropna(axis=@, inplacer True)
sns.set(style="darkgrid")
sns.regplot(x«cars_dota['Age’),y~ cars_data['Price'])
<AxesSubplotixlobeln'Age', ylabel='Price's

aoon

25000
3 20000
0
&

15000

10000

H000

4|Page

tn L&] # scatter plot of Price and age without the regeression fitiine

sns.regplot(x«cars dota[‘Age’],y« cars_datal 'Price'],markers'*" ,fit reg«False)

mr(a]r <AxesSubplotixlabel='Age’, ylabel«'Price's>

20000 "
25000 e
- ‘:. Aol B
20000 - -'? s
i M
15000 w -
-~ -
10000
B
5000 . 1 »
0 10 20 0 40 0 60 70 80
Age

Histogram

Histogram with default kernel density estimate

In [7]: #distribution of the variable 'Age’

sns.distplot(cars_data['aAge"])

d:\Usershjvakuhanaconda3dhenvsitflow\lib\site-packages\seabornidistributions.py: 2557
use either “displot® (a figure-lewel function with similar flexibility) or “histplc
warnings.warn{msg, FutureWarning)

out[7]: <AxesSubplotixlabel='Age', ylabel='Density'>
0.025
0.020

0015

Density

0010

0.005

0.000

sns.distplot(cars_datal 'Age’'), kde~False, bins - 8)

di\Users\jvaku\snacondad\envs\tflow\lib\zite-packagesz\seasborn\distributions.py:2557: Fut
use slther “displot® (a figure-level function with similar flexibility) or “histplot® (a

warnings.warn(msg, FutureWarning)

Out[n]: <AxesSubplot:xlsbelw~'Age’>
300
250
200

a0 50 60 0 6o

Age

150

100
) -.
o N
o 10 2 B

Bar Plot

5|Page

Bar Plot

¥ frequency distribution of cotegorical vartaoble "fuel Type®
sns . countplot(x«"FuelType", data«cars_datsa)

<AxenSubpleot:xlabel="rfuelType’, ylabel='count'>

1000
noo
Qo0
SO0

200

(ST Patrol CNG
FumiType

dgrouped bar plot of FuelType and Autamatic
sns . countplot (x«"FuelType"”, datascars_data, hue<"Automatic")

<AxesSubplotixlabel='FualType', ylabel='count'>

Automatic
100 RS
— 1
600
5
g 400
200
0 - L
Diesel Petrol CNG

FualType
Box and Whiskers plot

(For numerical variable)

sns.boxplot(y=cars_data["Price”])

<AxesSubplot:ylabel="Price’>

30000

25000

20000

Price

15000

10000

Explain the terms histogram, binning and density.

A simple histogram can be a great first step in understanding a dataset. Earlier, we saw a preview of
Matplotlib's histogram function which creates a basic histogram in one line, once the normal boiler-

plate imports are done:

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-white")

data = np.random.randn(1000)
plt.hist(data);
The hist() function has many options to tune both the calculation and the display; here's an example

of a more customized histogram:

6|Page

plt.hist(data, bins=30, normed=True, alpha=0.5,
histtype="'stepfilled', color="'steelblue’,
edgecolor="none");

The p1t.hist docstring has more information on other customization options available. | find this
combination of histtype="stepfilled' along with some transparency alpha to be very useful when

comparing histograms of several distributions:

x1 = np.random.normal(@, 0.8, 1000)
X2 = np.random.normal(-2, 1, 1000)
x3 = np.random.normal(3, 2, 1000)

kwargs = dict(histtype='stepfilled', alpha=0.3, normed=True, bins=40)

plt.hist(x1, **kwargs)

plt.hist(x2, **kwargs)

plt.hist(x3, **kwargs);

If you would like to simply compute the histogram (that is, count the number of points in a given bin)

and not display it, the np.histogram() function is available:

counts, bin_edges = np.histogram(data, bins=5)
print(counts)
[12 190 468 301 29]

Two-Dimensional Histograms and Binnings

Just as we create histograms in one dimension by dividing the number-line into bins, we can also
create histograms in two-dimensions by dividing points among two-dimensional bins. We'll take a
brief look at several ways to do this here. We'll start by defining some data—an x and y array drawn

from a multivariate Gaussian distribution:

mean = [0, 0]
cov = [[1) 1]) [1) 2]]
X, Y = np.random.multivariate_normal(mean, cov, 10000).T

pit.hist2d: | WO-dimensional histogram

One straightforward way to plot a two-dimensional histogram is to use

Matplotlib's p1t.hist2d function:

plt.hist2d(x, y, bins=30, cmap="Blues"')
cb = plt.colorbar()
cb.set_label('counts in bin")

Just as with p1t.hist, plt.hist2d has a number of extra options to fine-tune the plot and the binning,
which are nicely outlined in the function docstring. Further, just as p1t.hist has a counterpart

in np.histogram, plt.hist2d has a counterpart in np.histogram2d, which can be used as follows:

counts, xedges, yedges = np.histogram2d(x, y, bins=30)
For the generalization of this histogram binning in dimensions higher than two, see

the np.histogramdd function.

7|Page

pit.hexbin, Hexagonal binnings

The two-dimensional histogram creates a tesselation of squares across the axes. Another natural
shape for such a tesselation is the regular hexagon. For this purpose, Matplotlib provides
the plt.hexbin routine, which will represents a two-dimensional dataset binned within a grid of

hexagons:

plt.hexbin(x, y, gridsize=30, cmap='Blues')
cb = plt.colorbar(label="count in bin")

plt.hexbin has a number of interesting options, including the ability to specify weights for each point,
and to change the output in each bin to any NumPy aggregate (mean of weights, standard deviation

of weights, etc.).

Kernel density estimation

Another common method of evaluating densities in multiple dimensions is kernel density

estimation (KDE). This will be discussed more fully in In-Depth: Kernel Density Estimation, but for

now we'll simply mention that KDE can be thought of as a way to "smear out" the points in space
and add up the result to obtain a smooth function. One extremely quick and simple KDE
implementation exists in the scipy.stats package. Here is a quick example of using the KDE on this

data:

from scipy.stats import gaussian_kde

fit an array of size [Ndim, Nsamples]
data = np.vstack([x, y])
kde = gaussian_kde(data)

evaluate on a regular grid

xgrid = np.linspace(-3.5, 3.5, 490)

ygrid = np.linspace(-6, 6, 40)

Xgrid, Ygrid = np.meshgrid(xgrid, ygrid)

Z = kde.evaluate(np.vstack([Xgrid.ravel(), Ygrid.ravel()]))

Plot the result as an 1image

plt.imshow(Z.reshape(Xgrid.shape),
origin="lower"', aspect='auto’,
extent=[-3.5, 3.5, -6, 6],
cmap="Blues")

cb = plt.colorbar()

cb.set_label("density")

KDE has a smoothing length that effectively slides the knob between detail and smoothness (one
example of the ubiquitous bias—variance trade-off). The literature on choosing an appropriate
smoothing length is vast: gaussian_kde uses a rule-of-thumb to attempt to find a nearly optimal
smoothing length for the input data.Other KDE implementations are available within the SciPy
ecosystem, each with its own strengths and weaknesses; see, for
exafnpﬂe,sklearn.neighbors.KernelDensity and statsmodels.nonparametric.kernel_density.KDEMultivari

ate

8|Page

https://jakevdp.github.io/PythonDataScienceHandbook/05.13-kernel-density-estimation.html

Explain with an example “The GroupBy object “-- aggregate, filter, transform, and apply

The GroupBy object is a very flexible abstraction. In many ways, you can simply treat it as if it's a
collection of DataFrames, and it does the difficult things under the hood. Let's see some examples
using the Planets data.

Perhaps the most important operations made available by a GroupBy are aggregate, filter, transform,
and apply. We'll discuss each of these more fully in "Aggregate, Filter, Transform, Apply", but before
that let's introduce some of the other functionality that can be used with the

basic GroupBy operation.

Aggregate, filter, transform, apply

The preceding discussion focused on aggregation for the combine operation, but there are more
options available. In particular, GroupBy objects have aggregate(), filter(), transform(),

and apply() methods that efficiently implement a variety of useful operations before combining the
grouped data.

For the purpose of the following subsections, we'll use this DataFrame:

Code

rng = np.random.RandomState(0)

df = pd.DataFrame({'key": ['A', 'B', 'C','A', 'B', 'C'],
'datal’: range(6),
‘data2": rng.randint(0, 10, 6)},
columns = ['key', 'datal’, 'data2)

df

kay datadl dataz
o 5] =
=1 [l
L8
AN
L5

L= I R = |
LB U S
[S

Aggregation

The aggregate() method allows for even more flexibility. It can take a string, a function, or a list thereof, and compute all
the aggregates at once. Here is a quick example combining all these:

|+ df.groupby('key').aggregate(['min', np.median, max])

datat data2

min median max min median max

key

A) 15 } 3 40 4
1 25 A) 35 7

c 2 35 5 3 50 g

9|Page

http://localhost:8888/notebooks/Desktop/21-22/Data%20Analystics%20Lab/VR-PPT/Pivot/Aggregation-and-Grouping-Vr.ipynb#Aggregate,-Filter,-Transform,-Apply

Filtering
A fisering oparation allows you to drop ¢ata based on the group properies. For example, we might want 1o keep all groups In which the standacd deviation s
larger than some critical value:

def filter func{x):
return x| ‘datad’ J.std() > 4

display("df', “df.groupby('key'),std()", of . groupby('key') filter(filter func))
daf'

“df . groupby("key'). std()"

bey datal datal

1 8 ' Q
2 2]
4 8 4

L] C 5]

The filler funclion should retun a Boolean value speclfying whether the group passes the fillesing. Here bacause group A does not have a standand densation
greates than 4, It is dropped from the result
Transformation

While aggregation must rétum a reduced version of the data, transformalion can return some ransformed version of the full data to recombne. For such a
transformation, the output Is the same shape as the input. A common example & to center the data by SLOIraceng The group-wise mean

i dF.groupby(‘key "). transform(lambda x: X - x.mean())

datal catad
t5 10
15 a3
15 30

0

1

2

3 15 10
4 15 35
1]

The apply{) method

The apply() memhod le1s you apply an arbitrary function to the group results. The funclion should take o DataFrame | and refurn either 2 Pandas object
(€.0., DataFrame Serlées)or 3 scalar; the combing operation wil be tallored 1o the type of output ratumed

For example, here isan apply() that noemalizes the first column by e sum of the socond:

1z def noewm_ by dataz{x):

N A ITarrame of oo

) 0 vol e
xf "datai'] /e x{'dataz2'].sum()
return x

display("di’, df.groupby(key').apply(rorn by dataz))

T

key datal dataZ

0 A 0000000
1 B 042857
2 C 0186657 3
3 A 0315020 3
4 B 0574
5 C 04857 9

When to use Static and Instance methods? Explain with an example

Instance / Regular methods require an instance (self) as the first argument and when the method is
invoked (bound), self is automatically passed to the method

Static methods are functions which do not require instance but are part of class definitions.

Static mathods Useful when method does not need access to either the class variables or the
instance variables.

Instance methods Useful when method needs access to the values that are specific to the
instance and needs to call other methods that have access to instance specific values.

10|Page

« Before init () method, the object is been already constructed

Justify the need of Pivot Tables? Explain with and example
We have seen how the GroupBy abstraction lets us explore relationships within a dataset.

A pivot table is a similar operation that is commonly seen in spreadsheets and other programs that
operate on tabular data.

The pivot table takes simple column-wise data as input, and groups the entries into a two-dimensional
table that provides a multidimensional summarization of the data.

The difference between pivot tables and GroupBY : pivot tables as essentially
a multidimensional version of GroupBy aggregation. That is, you split-apply-combine, but both the
split and the combine happen across not a one-dimensional index, but across a two-dimensional grid.

Pivot Table Syntax
Here is the equivalent to the preceding operation using the pivot_table method of DataFrames:
In [5]: titanic.pivot table('survived', index="sex', columns='class')

Out[5]: class First Second Third

Sex

female 0.968085 0.821053 0.500000
male 0368852 0.157407 0.135447

his is eminently more readable than the groupby approach, and produces the same result. As you
might expect of an early 20th-century transatlantic cruise, the survival gradient favors both women
and higher classes. First-class women survived with near certainty (hi, Rose!), while only one in ten
third-class men survived (sorry, Jack!).

Multi-level pivot tables

Just as in the GroupBYy, the grouping in pivot tables can be specified with multiple levels, and via a
number of options. For example, we might be interested in looking at age as a third dimension. We'll
bin the age using the pd.cut function:

In [6]: age = pd.cut(titanic['age'], [0, 18, 88])
titanic.pivot table('survived', ['sex', age], 'class’)
Out[e]: class First Second Third

sex age

(0,18] 0.909091 1.000000 O0.511628

female
(18,801 0.972973 0900000 0423729

(0,18] 0.800000 0600000 0215686
male
(18,80] 0.375000 0071429 0133663

List and Explain in detail different ways of creating contour plots

A contour plot can be created with the plt.contour function. It takes three arguments: a grid

11|Page

of x values, a grid of y values, and a grid of z values. The x and y values represent positions on the
plot, and the z values will be represented by the contour levels. Perhaps the most straightforward
way to prepare such data is to use the np.meshgrid function, which builds two-dimensional grids from

one-dimensional arrays:

X
y

np.linspace(0, 5, 50)
np.linspace(0, 5, 40)

X, Y = np.meshgrid(x, y)
Z = (X, Y)

Now let's look at this with a standard line-only contour plot:

plt.contour(X, Y, Z, colors='black");

Notice that by default when a single color is used, negative values are represented by dashed lines,
and positive values by solid lines. Alternatively, the lines can be color-coded by specifying a
colormap with the cmap argument. Here, we'll also specify that we want more lines to be drawn—20
equally spaced intervals within the data range:

plt.contour(X, Y, Z, 20, cmap="RdGy');
Here we chose the rdcy (short for Red-Gray) colormap, which is a good choice for centered data.

Matplotlib has a wide range of colormaps available, which you can easily browse in IPython by doing

a tab completion on the p1t.cm module:

plt.cm.<TAB>

Our plot is looking nicer, but the spaces between the lines may be a bit distracting. We can change
this by switching to a filled contour plot using the p1t.contourf() function (notice the f at the end),

which uses largely the same syntax as plt.contour().

Additionally, we'll add a p1t.colorbar() command, which automatically creates an additional axis with

labeled color information for the plot:

plt.contourf(X, Y, Z, 20, cmap="RdGy")
plt.colorbar();

The colorbar makes it clear that the black regions are "peaks,” while the red regions are "valleys."

One potential issue with this plot is that it is a bit "splotchy."” That is, the color steps are discrete
rather than continuous, which is not always what is desired. This could be remedied by setting the
number of contours to a very high number, but this results in a rather inefficient plot: Matplotlib must
render a new polygon for each step in the level. A better way to handle this is to use

the pit.imshow() function, which interprets a two-dimensional grid of data as an image.

The following code shows this:

plt.imshow(Z, extent=[0, 5, 0, 5], origin="lower"',

12|Page

cmap="RdGy")
plt.colorbar()
plt.axis(aspect="image");

There are a few potential gotchas with imshow(), however:

e plt.imshow() doesn't accept an x and y grid, so you must manually specify
the extent [xmin, xmax, ymin, ymax] of the image on the plot.

e plt.imshow() by default follows the standard image array definition where the origin is in the
upper left, not in the lower left as in most contour plots. This must be changed when showing
gridded data.

e plt.imshow() Will automatically adjust the axis aspect ratio to match the input data; this can be

changed by setting, for example, plt.axis(aspect="image') to make x and y units match.

Finally, it can sometimes be useful to combine contour plots and image plots. For example, here
we'll use a partially transparent background image (with transparency set via the alpha parameter)

and overplot contours with labels on the contours themselves (using the plt.clabel() function):

contours = plt.contour(X, Y, Z, 3, colors="black")
plt.clabel(contours, inline=True, fontsize=8)

plt.imshow(Z, extent=[0, 5, @, 5], origin="lower"',
cmap="RdGy', alpha=0.5)
plt.colorbar();

The combination of these three functions—plt.contour, plt.contourf, and plt.imshow—gives nearly

limitless possibilities for displaying this sort of three-dimensional data within a two-dimensional plot.

Write a Pandas program to create a data frame with the test data , split the dataframe by school code and get mean, min,
and max value of i) age ii) weight for each school.

Test Data:

school class name age height weight
S1 s001 Vv Ram 12 173 35
S2 5002 V Kiran 12 192 32
S3 s003 VI Ryan 13 186 33
S4 s001 VI Bhim 13 167 30
S5 s002 VI Sita 14 151 31
S6 s004 V Bhavana 12 159 32
Solution

|1]: import pandas as pd
student data = pd.DataFrame({

de': ["s001',"s002','s0031",'s001",'s002', "s00e'],

print("Original DataFrame:")

print(student data)

13|Page

Original DataFrame:

school code class name date Of Birth age height weight \
S1 5001 I Alberto Franco 15/@5/2002 12 173 35
52 s002 ITT Gino Mcneill 17/@5/2002 12 192 32
53 s003 ITI Ryan Parkes 16/0©2/1999 13 186 33
54 s@el I Eesha Hinton 25/09/1998 13 167 30
55 s002 V Gino Mcneill 11/05/2002 14 151 31
56 se4 V David Parkes 15/09/1997 12 159 32
address
51 streetl
52 street2
S3 street3
S4 streetl
S5 street2
S6 streetd
In [2]: print('\nMean, min, and max value of age for each value of the school:')

grouped single = student_data.groupby('school code').agg({ age’: ['mean’, 'min’', 'max']})

print{grouped single)

Mean, min, and max value of age for each value of the school:
age
mean min max

school_code

5001 12,5 12 13
5802 13.8 12 14
5003 13.0 13 13
seas 12, 12 12

In [3]: print('\nMean, min, and max value of weight for each value of the school:')
grouped_single = student_data.groupby('school code').agg({ 'weight': ['mean’, ‘min’', ‘max']})

print(grouped_single)

Mean, min, and max value of weight for each value of the school:
weight
mean min max

school_code

s0el 32.5 30 35
002 31.5 31 32
5603 33.8 33 33
S804 32,6 32 32

14|Page

