
1 | P a g e

ANSWER KEY

Internal Assessment Test 3 – Jan , 2022

Sub: Data Analytics using Python
Sub

Code:
20MCA31

Date: 25/01//2022 Duration:
90

min’s

Max

Marks:
50 Sem: III Branch: MCA

1 What are the Steps in Visualization ? Explain with an example

Data Visualization :Steps involved in plotting a graph

• Define the x-axis and corresponding y-axis values as lists.

• Plot them on canvas using .plot() function.

• Give a name to x-axis and y-axis using .xlabel() and .ylabel() functions.

• Give a title to your plot using .title() function.

• Finally, view the plot, using .show() function.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

cars_data = pd.read_csv('Toyota.csv', index_col=0,na_values=["??","????"])

#removing missing values from the dataframe

cars_data.dropna(axis=0, inplace=True)

Scatter Plot

plt.scatter(cars_data['Age'],cars_data['Price'],c='red')

plt.title('Scatter plot of Price vs Age of the cars')

plt.xlabel('Age(months)')

plt.ylabel('Price(Euros)')

plt.show()

Histogram

plt.hist(cars_data['KM'])

2 | P a g e

Out[3]:
(array([92., 239., 331., 222., 111., 51., 25., 13., 10., 2.]),

 array([1.000000e+00, 2.430090e+04, 4.860080e+04, 7.290070e+04,

 9.720060e+04, 1.215005e+05, 1.458004e+05, 1.701003e+05,

 1.944002e+05, 2.187001e+05, 2.430000e+05]),

 <BarContainer object of 10 artists>)

Bar Plot (for categorical variables)

In [5]:

counts=[979, 120, 12]

fuelType = ('Petrol', 'Diesel', 'CNG')

index = np.arange(len(fuelType))

plt.bar(index, counts,color=['red','blue', 'cyan'])

plt.title('Bar plot of fuel types')

plt.xlabel('Fuel Types')

plt.ylabel('frequency')

plt.xticks(index, fuelType, rotation = 0)

plt.show()

2 What do you mean by Normalization and Standardization? Write any five differences

between them
Feature scaling is one of the most important data preprocessing step in machine learning. Algorithms that compute

the distance between the features are biased towards numerically larger values if the data is not scaled.

Tree-based algorithms are fairly insensitive to the scale of the features. Also, feature scaling helps machine learning,

and deep learning algorithms train and converge faster.

There are some feature scaling techniques such as Normalization and Standardization that are the most popular and

3 | P a g e

at the same time, the most confusing ones.

Let’s resolve that confusion.

Normalization or Min-Max Scaling is used to transform features to be on a similar scale. The new point is

calculated as:

X_new = (X - X_min)/(X_max - X_min)

This scales the range to [0, 1] or sometimes [-1, 1]. Geometrically speaking, transformation squishes the n-

dimensional data into an n-dimensional unit hypercube. Normalization is useful when there are no outliers as it

cannot cope up with them. Usually, we would scale age and not incomes because only a few people have high

incomes but the age is close to uniform.

Standardization or Z-Score Normalization is the transformation of features by subtracting from mean and

dividing by standard deviation. This is often called as Z-score.

X_new = (X - mean)/Std

Standardization can be helpful in cases where the data follows a Gaussian distribution. However, this does not have

to be necessarily true. Geometrically speaking, it translates the data to the mean vector of original data to the origin

and squishes or expands the points if std is 1 respectively. We can see that we are just changing mean and standard

deviation to a standard normal distribution which is still normal thus the shape of the distribution is not affected.

Standardization does not get affected by outliers because there is no predefined range of transformed features.

Difference between Normalization and Standardization

S.NO. Normalization Standardization

1.

Minimum and maximum value of

features are used for scaling

Mean and standard deviation is used for

scaling.

2.

It is used when features are of different

scales.

It is used when we want to ensure zero

mean and unit standard deviation.

3. Scales values between [0, 1] or [-1, 1]. It is not bounded to a certain range.

4. It is really affected by outliers. It is much less affected by outliers.

5.

Scikit-Learn provides a transformer

called MinMaxScaler for Normalization.

Scikit-Learn provides a transformer

called StandardScaler for

standardization.

6.

This transformation squishes the n-

dimensional data into an n-dimensional

unit hypercube.

It translates the data to the mean vector of

original data to the origin and squishes or

expands.

7.

It is useful when we don’t know about

the distribution

It is useful when the feature distribution is

Normal or Gaussian.

8.

It is a often called as Scaling

Normalization

It is a often called as Z-Score

Normalization.

3

Write the importance of self and __init__() method. Give an example

i)Importance of ‘self’

• Explicit reference to refer the current object, i.e the object which invoked the method

• Used to create and initialize instance variables of a class i.e it creates the attribute for the class

• ‘self’ reference must be used as a first parameter in all instance methods of a class otherwise

4 | P a g e

the methods are known as simply “class methods”

• Moreover, “self” is not a keyword and has no special meaning in Python. We can use any

name in that place. However, it is recommended not to use any name other than “self”

(merely a convention and for readability)

ii) __init__() method

• __init__() method helps in initializing the variable during the creation of object. Hence, it is

also called as ‘initializer method’ or Default Constructor.

Instance Methods and Static Methods

Instance / Regular methods require an instance (self) as the first argument and when the

method is invoked (bound), self is automatically passed to the method

• Static methods are functions which do not require

instance but are part of class definitions.

When to use Static and Instance methods?

• Instance methods Useful when method needs access to the values that are specific to the

instance and needs to call other methods that have access to instance specific values.

4 Write a Python program to demonstrate Data Visualization using Seaborn

5 | P a g e

6 | P a g e

5 Explain the terms histogram, binning and density.

A simple histogram can be a great first step in understanding a dataset. Earlier, we saw a preview of

Matplotlib's histogram function which creates a basic histogram in one line, once the normal boiler-

plate imports are done:

import numpy as np
import matplotlib.pyplot as plt
plt.style.use('seaborn-white')

data = np.random.randn(1000)
plt.hist(data);

The hist() function has many options to tune both the calculation and the display; here's an example

of a more customized histogram:

7 | P a g e

plt.hist(data, bins=30, normed=True, alpha=0.5,
 histtype='stepfilled', color='steelblue',
 edgecolor='none');

The plt.hist docstring has more information on other customization options available. I find this

combination of histtype='stepfilled' along with some transparency alpha to be very useful when

comparing histograms of several distributions:

x1 = np.random.normal(0, 0.8, 1000)
x2 = np.random.normal(-2, 1, 1000)
x3 = np.random.normal(3, 2, 1000)

kwargs = dict(histtype='stepfilled', alpha=0.3, normed=True, bins=40)

plt.hist(x1, **kwargs)
plt.hist(x2, **kwargs)
plt.hist(x3, **kwargs);

If you would like to simply compute the histogram (that is, count the number of points in a given bin)

and not display it, the np.histogram() function is available:

counts, bin_edges = np.histogram(data, bins=5)
print(counts)
[12 190 468 301 29]

Two-Dimensional Histograms and Binnings

Just as we create histograms in one dimension by dividing the number-line into bins, we can also

create histograms in two-dimensions by dividing points among two-dimensional bins. We'll take a

brief look at several ways to do this here. We'll start by defining some data—an x and y array drawn

from a multivariate Gaussian distribution:

mean = [0, 0]
cov = [[1, 1], [1, 2]]
x, y = np.random.multivariate_normal(mean, cov, 10000).T

plt.hist2d: Two-dimensional histogram

One straightforward way to plot a two-dimensional histogram is to use

Matplotlib's plt.hist2d function:

plt.hist2d(x, y, bins=30, cmap='Blues')
cb = plt.colorbar()
cb.set_label('counts in bin')

Just as with plt.hist, plt.hist2d has a number of extra options to fine-tune the plot and the binning,

which are nicely outlined in the function docstring. Further, just as plt.hist has a counterpart

in np.histogram, plt.hist2d has a counterpart in np.histogram2d, which can be used as follows:

counts, xedges, yedges = np.histogram2d(x, y, bins=30)

For the generalization of this histogram binning in dimensions higher than two, see

the np.histogramdd function.

8 | P a g e

plt.hexbin: Hexagonal binnings

The two-dimensional histogram creates a tesselation of squares across the axes. Another natural

shape for such a tesselation is the regular hexagon. For this purpose, Matplotlib provides

the plt.hexbin routine, which will represents a two-dimensional dataset binned within a grid of

hexagons:

plt.hexbin(x, y, gridsize=30, cmap='Blues')
cb = plt.colorbar(label='count in bin')

plt.hexbin has a number of interesting options, including the ability to specify weights for each point,

and to change the output in each bin to any NumPy aggregate (mean of weights, standard deviation

of weights, etc.).

Kernel density estimation

Another common method of evaluating densities in multiple dimensions is kernel density

estimation (KDE). This will be discussed more fully in In-Depth: Kernel Density Estimation, but for

now we'll simply mention that KDE can be thought of as a way to "smear out" the points in space

and add up the result to obtain a smooth function. One extremely quick and simple KDE

implementation exists in the scipy.stats package. Here is a quick example of using the KDE on this

data:

from scipy.stats import gaussian_kde

fit an array of size [Ndim, Nsamples]
data = np.vstack([x, y])
kde = gaussian_kde(data)

evaluate on a regular grid
xgrid = np.linspace(-3.5, 3.5, 40)
ygrid = np.linspace(-6, 6, 40)
Xgrid, Ygrid = np.meshgrid(xgrid, ygrid)
Z = kde.evaluate(np.vstack([Xgrid.ravel(), Ygrid.ravel()]))

Plot the result as an image
plt.imshow(Z.reshape(Xgrid.shape),
 origin='lower', aspect='auto',
 extent=[-3.5, 3.5, -6, 6],
 cmap='Blues')
cb = plt.colorbar()
cb.set_label("density")

KDE has a smoothing length that effectively slides the knob between detail and smoothness (one

example of the ubiquitous bias–variance trade-off). The literature on choosing an appropriate

smoothing length is vast: gaussian_kde uses a rule-of-thumb to attempt to find a nearly optimal

smoothing length for the input data.Other KDE implementations are available within the SciPy

ecosystem, each with its own strengths and weaknesses; see, for

example, sklearn.neighbors.KernelDensity and statsmodels.nonparametric.kernel_density.KDEMultivari

ate

https://jakevdp.github.io/PythonDataScienceHandbook/05.13-kernel-density-estimation.html

9 | P a g e

6 Explain with an example “The GroupBy object “-- aggregate, filter, transform, and apply

The GroupBy object is a very flexible abstraction. In many ways, you can simply treat it as if it's a
collection of DataFrames, and it does the difficult things under the hood. Let's see some examples
using the Planets data.

Perhaps the most important operations made available by a GroupBy are aggregate, filter, transform,
and apply. We'll discuss each of these more fully in "Aggregate, Filter, Transform, Apply", but before
that let's introduce some of the other functionality that can be used with the
basic GroupBy operation.

Aggregate, filter, transform, apply

The preceding discussion focused on aggregation for the combine operation, but there are more

options available. In particular, GroupBy objects have aggregate(), filter(), transform(),

and apply() methods that efficiently implement a variety of useful operations before combining the

grouped data.

For the purpose of the following subsections, we'll use this DataFrame:

Code

rng = np.random.RandomState(0)

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'],

 'data1': range(6),

 'data2': rng.randint(0, 10, 6)},

 columns = ['key', 'data1', 'data2'])

df

Aggregation

The aggregate() method allows for even more flexibility. It can take a string, a function, or a list thereof, and compute all

the aggregates at once. Here is a quick example combining all these:

http://localhost:8888/notebooks/Desktop/21-22/Data%20Analystics%20Lab/VR-PPT/Pivot/Aggregation-and-Grouping-Vr.ipynb#Aggregate,-Filter,-Transform,-Apply

10 | P a g e

7 When to use Static and Instance methods? Explain with an example

Instance / Regular methods require an instance (self) as the first argument and when the method is

invoked (bound), self is automatically passed to the method

• Static methods are functions which do not require instance but are part of class definitions.

• Static mathods Useful when method does not need access to either the class variables or the

instance variables.

• Instance methods Useful when method needs access to the values that are specific to the

instance and needs to call other methods that have access to instance specific values.

11 | P a g e

• Before init () method, the object is been already constructed

8 Justify the need of Pivot Tables? Explain with and example

We have seen how the GroupBy abstraction lets us explore relationships within a dataset.

A pivot table is a similar operation that is commonly seen in spreadsheets and other programs that

operate on tabular data.

The pivot table takes simple column-wise data as input, and groups the entries into a two-dimensional

table that provides a multidimensional summarization of the data.

The difference between pivot tables and GroupBy : pivot tables as essentially

a multidimensional version of GroupBy aggregation. That is, you split-apply-combine, but both the

split and the combine happen across not a one-dimensional index, but across a two-dimensional grid.

Pivot Table Syntax

Here is the equivalent to the preceding operation using the pivot_table method of DataFrames:

his is eminently more readable than the groupby approach, and produces the same result. As you

might expect of an early 20th-century transatlantic cruise, the survival gradient favors both women

and higher classes. First-class women survived with near certainty (hi, Rose!), while only one in ten

third-class men survived (sorry, Jack!).

Multi-level pivot tables

Just as in the GroupBy, the grouping in pivot tables can be specified with multiple levels, and via a

number of options. For example, we might be interested in looking at age as a third dimension. We'll

bin the age using the pd.cut function:

9 List and Explain in detail different ways of creating contour plots

A contour plot can be created with the plt.contour function. It takes three arguments: a grid

12 | P a g e

of x values, a grid of y values, and a grid of z values. The x and y values represent positions on the

plot, and the z values will be represented by the contour levels. Perhaps the most straightforward

way to prepare such data is to use the np.meshgrid function, which builds two-dimensional grids from

one-dimensional arrays:

x = np.linspace(0, 5, 50)
y = np.linspace(0, 5, 40)

X, Y = np.meshgrid(x, y)
Z = f(X, Y)

Now let's look at this with a standard line-only contour plot:

plt.contour(X, Y, Z, colors='black');

Notice that by default when a single color is used, negative values are represented by dashed lines,

and positive values by solid lines. Alternatively, the lines can be color-coded by specifying a

colormap with the cmap argument. Here, we'll also specify that we want more lines to be drawn—20

equally spaced intervals within the data range:

plt.contour(X, Y, Z, 20, cmap='RdGy');

Here we chose the RdGy (short for Red-Gray) colormap, which is a good choice for centered data.

Matplotlib has a wide range of colormaps available, which you can easily browse in IPython by doing

a tab completion on the plt.cm module:

plt.cm.<TAB>

Our plot is looking nicer, but the spaces between the lines may be a bit distracting. We can change

this by switching to a filled contour plot using the plt.contourf() function (notice the f at the end),

which uses largely the same syntax as plt.contour().

Additionally, we'll add a plt.colorbar() command, which automatically creates an additional axis with

labeled color information for the plot:

plt.contourf(X, Y, Z, 20, cmap='RdGy')
plt.colorbar();

The colorbar makes it clear that the black regions are "peaks," while the red regions are "valleys."

One potential issue with this plot is that it is a bit "splotchy." That is, the color steps are discrete

rather than continuous, which is not always what is desired. This could be remedied by setting the

number of contours to a very high number, but this results in a rather inefficient plot: Matplotlib must

render a new polygon for each step in the level. A better way to handle this is to use

the plt.imshow() function, which interprets a two-dimensional grid of data as an image.

The following code shows this:

plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',

13 | P a g e

 cmap='RdGy')
plt.colorbar()
plt.axis(aspect='image');

There are a few potential gotchas with imshow(), however:

• plt.imshow() doesn't accept an x and y grid, so you must manually specify

the extent [xmin, xmax, ymin, ymax] of the image on the plot.

• plt.imshow() by default follows the standard image array definition where the origin is in the

upper left, not in the lower left as in most contour plots. This must be changed when showing

gridded data.

• plt.imshow() will automatically adjust the axis aspect ratio to match the input data; this can be

changed by setting, for example, plt.axis(aspect='image') to make x and y units match.

Finally, it can sometimes be useful to combine contour plots and image plots. For example, here

we'll use a partially transparent background image (with transparency set via the alpha parameter)

and overplot contours with labels on the contours themselves (using the plt.clabel() function):

contours = plt.contour(X, Y, Z, 3, colors='black')
plt.clabel(contours, inline=True, fontsize=8)

plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower',
 cmap='RdGy', alpha=0.5)
plt.colorbar();

The combination of these three functions—plt.contour, plt.contourf, and plt.imshow—gives nearly

limitless possibilities for displaying this sort of three-dimensional data within a two-dimensional plot.

1
0

Write a Pandas program to create a data frame with the test data , split the dataframe by school code and get mean, min,

and max value of i) age ii) weight for each school.

Test Data:

 school class name age height weight

S1 s001 V Ram 12 173 35

S2 s002 V Kiran 12 192 32

S3 s003 VI Ryan 13 186 33

S4 s001 VI Bhim 13 167 30

S5 s002 VI Sita 14 151 31

S6 s004 V Bhavana 12 159 32

Solution

14 | P a g e

