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1 What are the Steps in Visualization ? Explain with an example 

 

Data Visualization :Steps involved in plotting a graph  

• Define the x-axis and corresponding y-axis values as lists. 

• Plot them on canvas using .plot() function. 

• Give a name to x-axis and y-axis using .xlabel() and .ylabel() functions. 

• Give a title to your plot using .title() function. 

•  Finally, view the plot, using .show() function. 

import pandas as pd 

import numpy as np 

import matplotlib.pyplot as plt 

cars_data = pd.read_csv('Toyota.csv', index_col=0,na_values=["??","????"]) 

 

#removing missing values from the dataframe 

cars_data.dropna(axis=0, inplace=True) 

## Scatter Plot 

plt.scatter(cars_data['Age'],cars_data['Price'],c='red') 

plt.title('Scatter plot of Price vs Age of the cars') 

plt.xlabel('Age(months)') 

plt.ylabel('Price(Euros)') 

plt.show() 

 

 
## Histogram 

plt.hist(cars_data['KM']) 
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Out[3]: 
(array([ 92., 239., 331., 222., 111.,  51.,  25.,  13.,  10.,   2.]), 

 array([1.000000e+00, 2.430090e+04, 4.860080e+04, 7.290070e+04, 

        9.720060e+04, 1.215005e+05, 1.458004e+05, 1.701003e+05, 

        1.944002e+05, 2.187001e+05, 2.430000e+05]), 

 <BarContainer object of 10 artists>) 

 

 
## Bar Plot (for categorical variables) 

In [5]: 

counts=[979, 120, 12] 

fuelType = ('Petrol', 'Diesel', 'CNG') 

index = np.arange(len(fuelType)) 

 

plt.bar(index, counts,color=['red','blue', 'cyan']) 

plt.title('Bar plot of fuel types') 

plt.xlabel('Fuel Types') 

plt.ylabel('frequency') 

plt.xticks(index, fuelType, rotation = 0) 

plt.show() 

 
2 What do you mean by Normalization and  Standardization? Write any five differences 

between them 
Feature scaling is one of the most important data preprocessing step in machine learning. Algorithms that compute 

the distance between the features are biased towards numerically larger values if the data is not scaled. 

Tree-based algorithms are fairly insensitive to the scale of the features. Also, feature scaling helps machine learning, 

and deep learning algorithms train and converge faster. 

There are some feature scaling techniques such as Normalization and Standardization that are the most popular and 
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at the same time, the most confusing ones. 

Let’s resolve that confusion. 

Normalization or Min-Max Scaling is used to transform features to be on a similar scale. The new point is 

calculated as: 

X_new = (X - X_min)/(X_max - X_min) 

This scales the range to [0, 1] or sometimes [-1, 1]. Geometrically speaking, transformation squishes the n-

dimensional data into an n-dimensional unit hypercube. Normalization is useful when there are no outliers as it 

cannot cope up with them. Usually, we would scale age and not incomes because only a few people have high 

incomes but the age is close to uniform. 

Standardization or Z-Score Normalization is the transformation of features by subtracting from mean and 

dividing by standard deviation. This is often called as Z-score. 

X_new = (X - mean)/Std 

Standardization can be helpful in cases where the data follows a Gaussian distribution. However, this does not have 

to be necessarily true. Geometrically speaking, it translates the data to the mean vector of original data to the origin 

and squishes or expands the points if std is 1 respectively. We can see that we are just changing mean and standard 

deviation to a standard normal distribution which is still normal thus the shape of the distribution is not affected. 

Standardization does not get affected by outliers because there is no predefined range of transformed features. 

Difference between Normalization and Standardization 

S.NO. Normalization Standardization 

1. 

Minimum and maximum value of 

features are used for scaling 

Mean and standard deviation is used for 

scaling. 

2. 

It is used when features are of different 

scales. 

It is used when we want to ensure zero 

mean and unit standard deviation. 

3. Scales values between [0, 1] or [-1, 1]. It is not bounded to a certain range. 

4. It is really affected by outliers. It is much less affected by outliers. 

5. 

Scikit-Learn provides a transformer 

called MinMaxScaler for Normalization. 

Scikit-Learn provides a transformer 

called StandardScaler for 

standardization. 

6. 

This transformation squishes the n-

dimensional data into an n-dimensional 

unit hypercube. 

It translates the data to the mean vector of 

original data to the origin and squishes or 

expands. 

7. 

It is useful when we don’t know about 

the distribution 

It is useful when the feature distribution is 

Normal or Gaussian. 

8. 

It is a often called as Scaling 

Normalization 

It is a often called as Z-Score 

Normalization. 
 

3 
 

Write the importance of self and __init__() method. Give an example 
 

i)Importance of ‘self’ 

• Explicit reference to refer the current object, i.e the object which invoked the method  

• Used to create and initialize instance variables of a class i.e it creates the attribute for the class  

• ‘self’ reference must be used as a first parameter in all instance methods of a class otherwise 
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the methods are  known as simply “class methods”  

• Moreover, “self” is not a keyword and has no special meaning in Python. We can use any 

name in that place.  However, it is recommended not to use any name other than “self” 

(merely a convention and for  readability)  

 

ii) __init__() method 

• __init__() method helps in initializing the variable during the creation of object. Hence, it is 

also called as  ‘initializer method’ or Default Constructor.  

 

Instance Methods and Static Methods 

Instance / Regular methods require an instance (self)  as the first argument and when the 

method is invoked  (bound), self is automatically passed to the method 

• Static methods are functions which do not require  

instance but are part of class definitions.  

When to use Static and Instance methods? 

• Instance methods Useful when method needs access to  the values that are specific to the  

instance and needs to call other  methods that have access to instance  specific values.  

  

4 Write a Python program to demonstrate Data Visualization using Seaborn 
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5 Explain the terms histogram, binning and density. 

 

A simple histogram can be a great first step in understanding a dataset. Earlier, we saw a preview of 

Matplotlib's histogram function which creates a basic histogram in one line, once the normal boiler-

plate imports are done: 

import numpy as np 
import matplotlib.pyplot as plt 
plt.style.use('seaborn-white') 
 
data = np.random.randn(1000) 
plt.hist(data); 

 

The hist() function has many options to tune both the calculation and the display; here's an example 

of a more customized histogram: 
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plt.hist(data, bins=30, normed=True, alpha=0.5, 
         histtype='stepfilled', color='steelblue', 
         edgecolor='none'); 

 

The plt.hist docstring has more information on other customization options available. I find this 

combination of histtype='stepfilled' along with some transparency alpha to be very useful when 

comparing histograms of several distributions: 

x1 = np.random.normal(0, 0.8, 1000) 
x2 = np.random.normal(-2, 1, 1000) 
x3 = np.random.normal(3, 2, 1000) 
 
kwargs = dict(histtype='stepfilled', alpha=0.3, normed=True, bins=40) 
 
plt.hist(x1, **kwargs) 
plt.hist(x2, **kwargs) 
plt.hist(x3, **kwargs); 

 

If you would like to simply compute the histogram (that is, count the number of points in a given bin) 

and not display it, the np.histogram() function is available: 

counts, bin_edges = np.histogram(data, bins=5) 
print(counts) 
[ 12 190 468 301  29] 

Two-Dimensional Histograms and Binnings 

Just as we create histograms in one dimension by dividing the number-line into bins, we can also 

create histograms in two-dimensions by dividing points among two-dimensional bins. We'll take a 

brief look at several ways to do this here. We'll start by defining some data—an x and y array drawn 

from a multivariate Gaussian distribution: 

mean = [0, 0] 
cov = [[1, 1], [1, 2]] 
x, y = np.random.multivariate_normal(mean, cov, 10000).T 

plt.hist2d: Two-dimensional histogram 

One straightforward way to plot a two-dimensional histogram is to use 

Matplotlib's plt.hist2d function: 

plt.hist2d(x, y, bins=30, cmap='Blues') 
cb = plt.colorbar() 
cb.set_label('counts in bin') 

 

Just as with plt.hist, plt.hist2d has a number of extra options to fine-tune the plot and the binning, 

which are nicely outlined in the function docstring. Further, just as plt.hist has a counterpart 

in np.histogram, plt.hist2d has a counterpart in np.histogram2d, which can be used as follows: 

 

counts, xedges, yedges = np.histogram2d(x, y, bins=30) 

For the generalization of this histogram binning in dimensions higher than two, see 

the np.histogramdd function. 
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plt.hexbin: Hexagonal binnings 

The two-dimensional histogram creates a tesselation of squares across the axes. Another natural 

shape for such a tesselation is the regular hexagon. For this purpose, Matplotlib provides 

the plt.hexbin routine, which will represents a two-dimensional dataset binned within a grid of 

hexagons: 

plt.hexbin(x, y, gridsize=30, cmap='Blues') 
cb = plt.colorbar(label='count in bin') 

 

plt.hexbin has a number of interesting options, including the ability to specify weights for each point, 

and to change the output in each bin to any NumPy aggregate (mean of weights, standard deviation 

of weights, etc.). 

Kernel density estimation 

Another common method of evaluating densities in multiple dimensions is kernel density 

estimation (KDE). This will be discussed more fully in In-Depth: Kernel Density Estimation, but for 

now we'll simply mention that KDE can be thought of as a way to "smear out" the points in space 

and add up the result to obtain a smooth function. One extremely quick and simple KDE 

implementation exists in the scipy.stats package. Here is a quick example of using the KDE on this 

data: 

from scipy.stats import gaussian_kde 
 
# fit an array of size [Ndim, Nsamples] 
data = np.vstack([x, y]) 
kde = gaussian_kde(data) 
 
# evaluate on a regular grid 
xgrid = np.linspace(-3.5, 3.5, 40) 
ygrid = np.linspace(-6, 6, 40) 
Xgrid, Ygrid = np.meshgrid(xgrid, ygrid) 
Z = kde.evaluate(np.vstack([Xgrid.ravel(), Ygrid.ravel()])) 
 
# Plot the result as an image 
plt.imshow(Z.reshape(Xgrid.shape), 
           origin='lower', aspect='auto', 
           extent=[-3.5, 3.5, -6, 6], 
           cmap='Blues') 
cb = plt.colorbar() 
cb.set_label("density") 

 

KDE has a smoothing length that effectively slides the knob between detail and smoothness (one 

example of the ubiquitous bias–variance trade-off). The literature on choosing an appropriate 

smoothing length is vast: gaussian_kde uses a rule-of-thumb to attempt to find a nearly optimal 

smoothing length for the input data.Other KDE implementations are available within the SciPy 

ecosystem, each with its own strengths and weaknesses; see, for 

example, sklearn.neighbors.KernelDensity and statsmodels.nonparametric.kernel_density.KDEMultivari

ate 

 

https://jakevdp.github.io/PythonDataScienceHandbook/05.13-kernel-density-estimation.html
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6 Explain with an example “The GroupBy object “-- aggregate, filter, transform, and apply 

The GroupBy object is a very flexible abstraction. In many ways, you can simply treat it as if it's a 
collection of DataFrames, and it does the difficult things under the hood. Let's see some examples 
using the Planets data. 

Perhaps the most important operations made available by a GroupBy are aggregate, filter, transform, 
and apply. We'll discuss each of these more fully in "Aggregate, Filter, Transform, Apply", but before 
that let's introduce some of the other functionality that can be used with the 
basic GroupBy operation. 

 

Aggregate, filter, transform, apply 

The preceding discussion focused on aggregation for the combine operation, but there are more 

options available. In particular, GroupBy objects have aggregate(), filter(), transform(), 

and apply() methods that efficiently implement a variety of useful operations before combining the 

grouped data. 

For the purpose of the following subsections, we'll use this DataFrame:  

Code 

 

rng = np.random.RandomState(0) 

df = pd.DataFrame({'key': ['A', 'B', 'C', 'A', 'B', 'C'], 

                   'data1': range(6), 

                   'data2': rng.randint(0, 10, 6)}, 

                   columns = ['key', 'data1', 'data2']) 

df 

 

Aggregation 

The aggregate() method allows for even more flexibility. It can take a string, a function, or a list thereof, and compute all 

the aggregates at once. Here is a quick example combining all these: 

 

 

http://localhost:8888/notebooks/Desktop/21-22/Data%20Analystics%20Lab/VR-PPT/Pivot/Aggregation-and-Grouping-Vr.ipynb#Aggregate,-Filter,-Transform,-Apply


10 | P a g e  

 

 
7  When to use Static and Instance methods? Explain with an example 

 
Instance / Regular methods require an instance (self)  as the first argument and when the method is 

invoked  (bound), self is automatically passed to the method 

• Static methods are functions which do not require instance but are part of class definitions.  

• Static mathods Useful when method does not need  access to either the class variables or  the 

instance variables.  

• Instance methods Useful when method needs access to  the values that are specific to the  

instance and needs to call other  methods that have access to instance  specific values.  
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• Before  init  () method, the object is been already constructed  

8 Justify the need of Pivot Tables? Explain with and example 

We have seen how the GroupBy abstraction lets us explore relationships within a dataset. 

A pivot table is a similar operation that is commonly seen in spreadsheets and other programs that 

operate on tabular data. 

The pivot table takes simple column-wise data as input, and groups the entries into a two-dimensional 

table that provides a multidimensional summarization of the data. 

The difference between pivot tables and GroupBy : pivot tables as essentially 

a multidimensional version of GroupBy aggregation. That is, you split-apply-combine, but both the 

split and the combine happen across not a one-dimensional index, but across a two-dimensional grid. 

Pivot Table Syntax 

Here is the equivalent to the preceding operation using the pivot_table method of DataFrames: 

 
his is eminently more readable than the groupby approach, and produces the same result. As you 

might expect of an early 20th-century transatlantic cruise, the survival gradient favors both women 

and higher classes. First-class women survived with near certainty (hi, Rose!), while only one in ten 

third-class men survived (sorry, Jack!). 

Multi-level pivot tables 

Just as in the GroupBy, the grouping in pivot tables can be specified with multiple levels, and via a 

number of options. For example, we might be interested in looking at age as a third dimension. We'll 

bin the age using the pd.cut function: 

 

 

9 List and Explain in detail different ways of creating contour plots 

 

A contour plot can be created with the plt.contour function. It takes three arguments: a grid 
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of x values, a grid of y values, and a grid of z values. The x and y values represent positions on the 

plot, and the z values will be represented by the contour levels. Perhaps the most straightforward 

way to prepare such data is to use the np.meshgrid function, which builds two-dimensional grids from 

one-dimensional arrays: 

x = np.linspace(0, 5, 50) 
y = np.linspace(0, 5, 40) 
 
X, Y = np.meshgrid(x, y) 
Z = f(X, Y) 

Now let's look at this with a standard line-only contour plot: 

plt.contour(X, Y, Z, colors='black'); 

 

Notice that by default when a single color is used, negative values are represented by dashed lines, 

and positive values by solid lines. Alternatively, the lines can be color-coded by specifying a 

colormap with the cmap argument. Here, we'll also specify that we want more lines to be drawn—20 

equally spaced intervals within the data range: 

plt.contour(X, Y, Z, 20, cmap='RdGy'); 

 

Here we chose the RdGy (short for Red-Gray) colormap, which is a good choice for centered data. 

Matplotlib has a wide range of colormaps available, which you can easily browse in IPython by doing 

a tab completion on the plt.cm module: 

plt.cm.<TAB> 

Our plot is looking nicer, but the spaces between the lines may be a bit distracting. We can change 

this by switching to a filled contour plot using the plt.contourf() function (notice the f at the end), 

which uses largely the same syntax as plt.contour(). 

Additionally, we'll add a plt.colorbar() command, which automatically creates an additional axis with 

labeled color information for the plot: 

plt.contourf(X, Y, Z, 20, cmap='RdGy') 
plt.colorbar(); 

 

The colorbar makes it clear that the black regions are "peaks," while the red regions are "valleys." 

One potential issue with this plot is that it is a bit "splotchy." That is, the color steps are discrete 

rather than continuous, which is not always what is desired. This could be remedied by setting the 

number of contours to a very high number, but this results in a rather inefficient plot: Matplotlib must 

render a new polygon for each step in the level. A better way to handle this is to use 

the plt.imshow() function, which interprets a two-dimensional grid of data as an image. 

The following code shows this: 

plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower', 
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           cmap='RdGy') 
plt.colorbar() 
plt.axis(aspect='image'); 

 

There are a few potential gotchas with imshow(), however: 

• plt.imshow() doesn't accept an x and y grid, so you must manually specify 

the extent [xmin, xmax, ymin, ymax] of the image on the plot. 

• plt.imshow() by default follows the standard image array definition where the origin is in the 

upper left, not in the lower left as in most contour plots. This must be changed when showing 

gridded data. 

• plt.imshow() will automatically adjust the axis aspect ratio to match the input data; this can be 

changed by setting, for example, plt.axis(aspect='image') to make x and y units match. 

Finally, it can sometimes be useful to combine contour plots and image plots. For example, here 

we'll use a partially transparent background image (with transparency set via the alpha parameter) 

and overplot contours with labels on the contours themselves (using the plt.clabel() function): 

contours = plt.contour(X, Y, Z, 3, colors='black') 
plt.clabel(contours, inline=True, fontsize=8) 
 
plt.imshow(Z, extent=[0, 5, 0, 5], origin='lower', 
           cmap='RdGy', alpha=0.5) 
plt.colorbar(); 

 

The combination of these three functions—plt.contour, plt.contourf, and plt.imshow—gives nearly 

limitless possibilities for displaying this sort of three-dimensional data within a two-dimensional plot. 

1
0 

Write a Pandas program to create a data frame with the test data , split the  dataframe by school code and get mean, min, 

and max value of  i) age  ii) weight for each school. 

Test Data: 

       school   class     name        age        height      weight   

S1   s001        V       Ram              12         173              35   

S2   s002        V       Kiran            12         192               32   

S3   s003       VI      Ryan             13         186               33   

S4   s001      VI       Bhim             13         167               30   

S5   s002      VI       Sita               14         151                31   

S6   s004      V        Bhavana       12         159                32   

 
Solution 
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