
CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 3 – Jan. 2022

Sub: Advances in Java
Sub

Code:
20MCA33

Date: 25/1/2022 Duration: 90 min’s Max Marks: 50 Sem: III Branch: MCA

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module

 PART I MARKS

OBE

CO

RBT

1 Demonstrate a program to implement an Entity Bean

OR
10 CO6 L4

2.a. How are jar files created and used? Explain its advantages 5 CO5 L2

2.b. Explain bound and constrained properties of design patterns 5 CO5 L2

3
PART II

Demonstrate a program to implement an Message Driven Bean

OR

10 CO6 L4

4.a.

What is a manifest file? Mention its importance. 5 CO5 L2

b. List the differences between stateless session bean and stateful session bean. 5 CO6 L3

5
PART III

With a neat block diagram, explain the life cycle of a stateful session bean

OR

10 CO6 L2

6.a. What is entity bean? Explain the java persistence model in detail 6 CO6 L2

b. Define introspection. Explain simple properties with it. 4 CO5 L2

7
PART IV

List all the EJB container services and explain any five in detail
10 CO6 L1

8

OR

Discuss the classes of EJB and depict the various components of interaction with

a neat diagram

10 CO6 L2

9
PART V

Write the short note about the following

i)Persistence Context

ii)XML Deployment Descriptor

OR

10 CO6 L2

10 Write an EJB program that demonstrates session bean with proper business logic 10 CO6 L4

CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test 3– Jan 2022

Sub: Advances in Java
Sub

Code:
20MCA33 Branch: MCA

Date: 25/1/2022 Duration:
90

min’s
Max Marks: 50 Sem

III

1. Demonstrate a program to implement an Entity Bean.

Student.java

package Persist;

import java.io.Serializable;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.GenerationType;

import javax.persistence.Id;

@Entity

public class Student implements Serializable {

 private static final long serialVersionUID = 1L;

 @Id

 @GeneratedValue(strategy = GenerationType.IDENTITY)

 private Long id;

 private String usnno;

 private String name;

 private int mark;

 public Long getId() {

 return id;

 }

 public void setId(Long id) {

 this.id = id;

 }

 @Override

 public int hashCode() {

 int hash = 0;

 hash += (id != null ? id.hashCode() : 0);

 return hash;

 }

 @Override

 public boolean equals(Object object) {

 // TODO: Warning - this method won't work in the case the id fields are not set

 if (!(object instanceof Student)) {

 return false;

 }

 Student other = (Student) object;

 if ((this.id == null && other.id != null) || (this.id != null && !this.id.equals(other.id))) {

 return false;

 }

 return true;

 }

 @Override

 public String toString() {

 return "Persist.Student[id=" + id + "]";

 }

 public String getUsnno() {

 return usnno;

 }

 public void setUsnno(String usnno) {

 this.usnno = usnno;

 }

 public String getName() {

 return name;

 }

 public void setName(String name) {

 this.name = name;

 }

 public int getMark() {

 return mark;

 }

 public void setMark(int mark) {

 this.mark = mark;

 }

}

StudServlet.java

package WebClient;

import Persist.Student;

import Persist.StudentFacadeLocal;

import java.io.IOException;

import java.io.PrintWriter;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class StudServlet extends HttpServlet

{

 @EJB

 private StudentFacadeLocal studentFacade;

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 Student obj=new Student();

 obj.setUsnno(request.getParameter("usnno"));

 obj.setName(request.getParameter("name"));

 obj.setMark(Integer.parseInt(request.getParameter("mark")));

 studentFacade.create(obj);

 try (PrintWriter out = response.getWriter()) {

 /* TODO output your page here. You may use following sample code. */

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Student Data</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Congrats : Student " + request.getParameter("name") + " Record is created

successfully </h1>");

 out.println("</body>");

 out.println("</html>");

 }

 }

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }// </editor-fold>

}

Index.html

<html>

 <head>

 <title>TODO supply a title</title>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 </head>

 <body>

 <form method="get" action="StudServlet">

 Enter USN No. :<input type ="text" name ="usnno"/>

 Enter Name :<input type ="text" name ="name"/>

 Enter Mark :<input type ="text" name ="mark"/>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

2.a. How are jar files created and used? Explain its advantages.

JAR files are packaged with the ZIP file format, so you can use them for tasks such as lossless

data compression, archiving, decompression, and archive unpacking. These tasks are among the

most common uses of JAR files, and you can realize many JAR file benefits using only these

basic features.

Creating a JAR File

The basic format of the command for creating a JAR file is:

jar cf jar-file input-file(s)
The options and arguments used in this command are:

The c option indicates that you want to create a JAR file.

The f option indicates that you want the output to go to a file rather than to stdout.
jar- file is the name that you want the resulting JAR file to have. You can use any filename for a

JAR file. By convention, JAR filenames are given a .jar extension, though this is not required.

The input-file(s) argument is a space-separated list of one or more files that you want to include

in your JAR file. The input- file(s)argument can contain the wildcard * symbol. If any of the

"input- files" are directories, the contents of those directories are added to the JAR archive

recursively.

The c and f options can appear in either order, but there must not be any space between them.
This command will generate a compressed JAR file and place it in the current directory.

c - creates a new or empty archive pm the Std output

t - lists the table of contents from std output

X file – it extracts all files or just the named files

f - The argument following this option specifies a JAR file to work
v - It generates verbose output on stderr

m - It includes manifest information from a specified manifest file

0 - it indicates ‘store only’ without using ZIP compression

M - it specifies that a manifest file should not be created for the entries

u - It updates an exisiting JAR file by adding files or changing the

Manifest
To create a JAR file jar cf jar-file input-file(s)

To view the contents of a JAR file jar tf jar-file

To extract the contents of a JAR file jar xf jar-file

To extract specific files from a JAR file jar xf jar-file archived-file(s)

To run an application packaged as a JAR file

(requires the Main-class manifest header) java -jar app.jar

Benefits of JAR

• Security: You can digitally sign the contents of a JAR file.

• Decreased download time: for Applets and Java Web Start

• Compression: efficient storage

• Packaging for extensions: extend JVM (example Java3D)
• Package Sealing: enforce version consistency

o all classes defined in a package must be found in the same JAR file

• Package Versioning: hold data like like vendor and version information
• Portability: the mechanism for handling JAR files is a standard part of the Java platform's

core API

2.b. Explain bound and constrained properties of design patterns.

Bound Properties

• Bound properties generates an event when their values change.
• This event is of type PropertyChangeEvent and is sent to all registered event listeners

of this type.

• To make a property a bound property, use the setBound method like

PropertyName.setBound(true)

For example filled.setBound(true);

• When bound property changes, an event is of type PropertyChangeEvent, is generated

and a notification is sent to interested listeners.

• There is a standard listener class for this kind of event. Listeners need to implement this

interface PropertyChangeListener

It has one method:

public void propertyChange(PropertyChangeEvent)

• A class that handles this event must implement the PropertyChangeListener interface
Implement Bound Property in a Bean

• Declare and Instantiate a PropertyChangeSupport object that provides the bulk of

bound property‘s functionality,

private PropertyChangeSupport changes = new

PropertyChangeSupport(this);

• Implement registration and unregistration methods . The BeanBox will call these

methods when a connection is made.

https://docs.oracle.com/javase/tutorial/deployment/jar/appman.html

public void addPropertyChangeListener(PropertyChangeListener p)

{

changes.addPropertyChangeListener(p);

}

public void removePropertyChangeListener(PropertyChangeListener p)

{

changes.removePropertyChangeListener(p);

}

Constrained Properties:

• An object with constrained properties allows other objects to veto a constrained

property value change.

• A bean property for which a change to the property results in validation by another

bean. The other bean may reject the change if it is not appropriate.

• Constrained property listeners can veto a change by throwing a PropertyVetoException.

• It generates an event called PropertyChangeEvent when an attempt is made to
change its value

• This event is sent to objects that previously registered an interest in receiving an

such notification

• Those objects have the ability to veto the proposed change
• This allows a bean to operate differently according to the runtime

environment Bean with constrained property must

1. Allow VetoableChangeListener object to register and unregister its interest in
receiving notifications

2. Fire property change at those registered listeners. The event is fired before the actual

property change takes place

Implementation of Constrained Property in a Bean

1. To support constrained properties the Bean class must instantiate the a
VetoableChangeSupport object

private VetoableChangeSupport vetos=new

VetoableChangeSupport(this);

2. Define registration methods to add and remove vetoers.

public void addVetoableChangeListener(VetoableChangeListener v)

{

vetos.addVetoableChangeListener(v);

}

public void removeVetoableChangeListener(VetoableChangeListener v)

{

vetos.removeVetoableChangeListener(v);

}

3. Write a property’s setter method to fire a property change event and setter method throws a

PropertyVetoException. In this method change the property and send change event to listeners.

 3. Demonstrate a program to implement an Message Driven Bean.

Mbean.java

package com.message;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.ejb.ActivationConfigProperty;

import javax.ejb.MessageDriven;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageListener;

import javax.jms.TextMessage;

@MessageDriven(mappedName = "jms/dist", activationConfig = {

 @ActivationConfigProperty(propertyName = "destinationType", propertyValue =

"javax.jms.Queue")

})

public class MBean implements MessageListener

{

 public MBean()

 {

 }

 @Override

 public void onMessage(Message message)

 {

 TextMessage tmsg=null;

 tmsg=(TextMessage)message;

 try {

 System.out.println(tmsg.getText());

 } catch (JMSException ex) {

 Logger.getLogger(MBean.class.getName()).log(Level.SEVERE, null, ex);

 }

 }

}

NewServlet.java

package com.web;

import java.io.IOException;

import java.io.PrintWriter;

import java.util.logging.Level;

import java.util.logging.Logger;

import javax.annotation.Resource;

import javax.jms.Connection;

import javax.jms.ConnectionFactory;

import javax.jms.JMSException;

import javax.jms.Message;

import javax.jms.MessageProducer;

import javax.jms.Queue;

import javax.jms.Session;

import javax.jms.TextMessage;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

public class NewServlet extends HttpServlet {

 @Resource(mappedName = "jms/dist")

 private Queue dist;

 @Resource(mappedName = "jms/queue")

 private ConnectionFactory queue;

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html;charset=UTF-8");

 String str=request.getParameter("msg");

 try {

 sendJMSMessageToDist(str);

 } catch (JMSException ex) {

 Logger.getLogger(NewServlet.class.getName()).log(Level.SEVERE, null, ex);

 }

 try (PrintWriter out = response.getWriter()) {

 /* TODO output your page here. You may use following sample code. */

 out.println("<!DOCTYPE html>");

 out.println("<html>");

 out.println("<head>");

 out.println("<title>Servlet NewServlet</title>");

 out.println("</head>");

 out.println("<body>");

 out.println("<h1>Your msg " + str + "has been sent to server pls check the log</h1>");

 out.println("</body>");

 out.println("</html>");

 }

 }

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo() {

 return "Short description";

 }// </editor-fold>

 private Message createJMSMessageForjmsDist(Session session, Object messageData) throws

JMSException {

 TextMessage tm = session.createTextMessage();

 tm.setText(messageData.toString());

 return tm;

 }

 private void sendJMSMessageToDist(Object messageData) throws JMSException {

 Connection connection = null;

 Session session = null;

 try {

 connection = queue.createConnection();

 session = connection.createSession(false, Session.AUTO_ACKNOWLEDGE);

 MessageProducer messageProducer = session.createProducer(dist);

 messageProducer.send(createJMSMessageForjmsDist(session, messageData));

 } finally {

 if (session != null) {

 try {

 session.close();

 } catch (JMSException e) {

 Logger.getLogger(this.getClass().getName()).log(Level.WARNING, "Cannot close

session", e);

 }

 }

 if (connection != null) {

 connection.close();

 }

 }

 }

}

index.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>JSP Page</title>

 </head>

 <body>

 <form action="NewServlet">

 Your Message :

 <input type="text" name="msg">

 <input type="submit" value="Submit">

 </form>

 </body>

</html>

4.a. What is a manifest file? Mention its importance.

The manifest is a special file that can contain information about the files packaged in a JAR

file. By tailoring this "meta" information that the manifest contains, you enable the JAR file to

serve a variety of purposes.

Applications Bundled as JAR Files: If an application is bundled in a JAR file, the Java Virtual

Machine needs to be told what the entry point to the application is. An entry point is any class with

a public static void main(String[] args) method. This information is provided in the

Main-Class header, which has the general form:

Main-Class: classname

The value classname is to be replaced with the application's entry point.

Download Extensions: Download extensions are JAR files that are referenced by the manifest

files of other JAR files. In a typical situation, an applet will be bundled in a JAR file whose

manifest references a JAR file (or several JAR files) that will serve as an extension for the

purposes of that applet. Extensions may reference each other in the same way. Download

extensions are specified in the Class-Path header field in the manifest file of an applet,

application, or another extension. A Class-Path header might look like this, for example:

Class-Path: servlet.jar infobus.jar acme/beans.jar

With this header, the classes in the files servlet.jar, infobus.jar, and acme/beans.jar will serve

as extensions for purposes of the applet or application. The URLs in the Class-Path header

are given relative to the URL of the JAR file of the applet or application.

Package Sealing: A package within a JAR file can be optionally sealed, which means that all

classes defined in that package must be archived in the same JAR file. A package might be

sealed to ensure version consistency among the classes in your software or as a security

measure. To seal a package, a Name header needs to be added for the package, followed by a

Sealed header, similar to this:

Name: myCompany/myPackage/

Sealed: true

The Name header's value is the package's relative pathname. Note that it ends with a '/' to

distinguish it from a filename. Any headers following a Name header, without any intervening

blank lines, apply to the file or package specified in the Name header. In the above example,

because the Sealed header occurs after the Name: myCompany/myPackage header, with no

blank lines between, the Sealed header will be interpreted as applying (only) to the package

myCompany/myPackage.

Package Versioning: The Package Versioning specification defines several manifest headers to hold

versioning information. One set of such headers can be assigned to each package. The versioning

headers should appear directly beneath the Name header for the package. This example shows all the

versioning headers:

Name: java/util/

Specification-Title: "Java Utility Classes"

Specification-Version: "1.2"

Specification-Vendor: "Sun Microsystems, Inc.".

Implementation-Title: "java.util"

Implementation-Version: "build57"

Implementation-Vendor: "Sun Microsystems, Inc."

4.b. List the differences between stateless session bean and stateful session bean.
Stateless:

1) Stateless session bean maintains across method and transaction

2) The EJB server transparently reuses instances of the Bean to service different clients at

the per-method level (access to the session bean is serialized and is 1 client per session

bean per method.

3) Used mainly to provide a pool of beans to handle frequent but brief requests. The EJB
server transparently reuses instances of the bean to service different clients.

4) Do not retain client information from one method invocation to the next. So many

require the client to maintain client side which can mean more complex client code.

5) Client passes needed information as parameters to the business methods.

6) Performance can be improved due to fewer connections across the network.

Stateful:

1) A stateful session bean holds the client session’s state.

2) A stateful session bean is an extension of the client that creates it.

3) Its fields contain a conversational state on behalf of the session object’s client. This
state describes the conversation represented by a specific client/session object pair.

4) Its lifetime is controlled by the client.

5) Cannot be shared between clients.

 5. With a neat block diagram, explain the life cycle of a stateful session bean.

Below Figure illustrates the stages that a session bean passes through during its lifetime. The client

initiates the life cycle by invoking the create method.The EJB container instantiates the bean and then

invokes the setSessionContext and ejbCreate methods in the session bean. The bean is now ready to have

its business methods invoked.

While in the ready stage, the EJB container may decide to deactivate, or passivate, the bean by moving it

from memory to secondary storage. (Typically, the EJB container uses a least-recently-used algorithm to

select a bean for passivation.) The EJB container invokes the bean's ejbPassivate method immediately

before passivating it. If a client invokes a business method on the bean while it is in the passive stage, the

EJB container activates the bean, moving it back to the ready stage, and then calls the

bean's ejbActivate method.

At the end of the life cycle, the client invokes the remove method and the EJB container calls the

bean's ejbRemove method. The bean's instance is ready for garbage collection.

Your code controls the invocation of only two life cycle methods-the create and remove methods in the

client. All other methods in Figure are invoked by the EJB container. The ejbCreate method, for example,

is inside the bean class, allowing you to perform certain operations right after the bean is instantiated. For

instance, you may wish to connect to a database in the ejbCreate method.

Figure Life Cycle of a Stateful Session Bean

6.a. What is entity bean? Explain the java persistence model in detail.

•An entity bean is a remote object that

–manages persistent data,

–performs complex business logic,

–uses several dependent Java objects, and

–can be uniquely identified by a primary key.

•Entity beans are normally coarse-grained persistent objects,

They utilize persistent data stored within several fine- grained persistent Java objects. Persistence

•JPA (Java Persistent API) - handles the plumbing between Java and SQL. EJB provides convenient

integration with JPA via the entity bean.

•Persistence is a key piece of the Java EE platform.

 – Older versionJ2EE, the EJB 2.x specification was responsible for defining this layer.

–In Java EE 5, persistence was spun off into its own specification.

–EE6, we have a new revision called the Java Persistence API, Version 2.0, or JPA.

•Persistence

–provides an ease-of-use abstraction on top of JDBC

–so that your code may be isolated from the database

–and vendor-specific peculiarities and optimizations.

•It can also be described as an object-to-relational mapping engine (ORM), which means that the Java

Persistence API can automatically map your Java objects to and from a relational database.

•Entity - A persistent object representing the data-store record. It is good to be serializable.

•EntityManager - Persistence interface to do data operations like add/delete/update/find on persistent

object(entity). It also helps to execute queries using Query interface.

•Persistence unit (persistence.xml) - Persistence unit describes the properties of persistence mechanism.

•Data Source (*ds.xml) - Data Source describes the data-store related properties like connection url. user-

name,password etc.

Persistence Context

•A persistence context is a set of managed entity object instances .

•Persistence contexts are managed by an entity manager.

•The entity manager tracks all entity objects within a persistence context for changes and updates made,

and flushes these changes to the database using the flush mode rules

•Once a persistence context is closed, all managed entity object instances become detached and are no

longer managed.

•Once an object is detached from a persistence context, it can no longer be managed by an entity manager,

and any state changes to this object instance will not be synchronized with the database.

•When a persistence context is closed, all managed entity objects become detached and are unmanaged.

•There are two types of persistence contexts:

•transaction-scoped persistence context

•extended persistence context.

Transaction Scoped Persistence context

•Everything executed

•Either fully succeed or fully fail

6.b. Define introspection. Explain simple properties with it.

Introspection:

Introspection can be defined as the technique of obtaining information about bean properties,

events and methods.

Basically introspection means analysis of bean capabilities.

Introspection is the automatic process by which a builder tool finds out which properties,
methods, and events a bean supports.

Introspection describes how methods, properties, and events are discovered in the beans that you

write.

This process controls the publishing and discovery of bean operations and properties

Without introspection, the JavaBeans technology could not operate.

2 ways by which the developer of a Bean can indicate which of its properties, events and
methods should be exposed by an application builder tool.

 Simple naming conventions are used, which allows to infer information about a bean

 Additional class that extends the BeanInfo interface that explicitly supplies this
information

Simple Properties:

Simple properties refer to the private variables of a JavaBean that can have only a single value.

Simple properties are retrieved and specified using the get and set methods respectively.

A read/write property has both of these methods to access its values. The get method used to

read the value of the property .The set method that sets the value of the property.

The setXXX() and getXXX() methods are the heart of the java beans properties mechanism. This

is also

called getters and setters. These accessor methods are used to set the property .

The syntax of get method is:

public return_type

get<PropertyName>() public T getN();

public void setN(T arg)

N is the name of the property and T is its type

Ex:

public double getDepth()

{

return depth;

}

Read only property has only a get method. The
syntax of set method is:

public void set<PropertyName>(data_type value)

Ex:

public void setDepth(double d)

{

Depth=d;

}

7. List all the EJB container services and explain any five in detail.

1. Dependency Injection

2. Concurrency

3. Instance Polling and Caching
4. Transactions
5. Security
6. Timers

7. Naming and Object Stores, JNDI

8. Lifecycle callbacks

9. Interoperability

10. Interceptors

1. Instance Pooling/Caching

Because of the strict concurrency rules enforced by the Container, an intentional bottleneck is

often introduced where a service instance may not be available for processing until some other

request has completed.

If the service was restricted to a singular instance, all subsequent requests would have to queue

up until their turn was reached

EJB

addresses this problem through a technique called instance pooling, in which each

odule is allocated some number of instances with which to serve incoming requests Many

vendors provide configuration options to allocate pool sizes appropriate to the work being

performed, providing the compromise needed to achieve optimal throughput.

2. Transactions

Transactions provide a means for the developer to easily delegate the creation and control of

transactions to the container.

 When a bean calls createTimer(), the operation is performed in the scope of the current

transaction. If the transaction rolls back, the timer is undone and it’s not created

 The timeout callback method on beans should have a transaction attribute of RequiresNew.
 This ensures that the work performed by the callback method is in the scope of container-

initiated transactions.

3. Security

Most enterprise applications are designed to serve a large number of clients, and users are

not necessarily equal in terms of their access rights.

An administrator might require hooks into the configuration of the system, whereas unknown

guests may be allowed a read-only view of data.

If we group users into categories with defined roles, we can then allow or restrict access to the

role itself, as illustrated in Figure 15-1.

Figure 15-1. EJB security permitting access based upon the caller’s role

This allows the application developer to explicitly allow or deny access at a fine- grained level

based upon the caller’s identity

4. Timers

We dealt exclusively with client-initiated requests. While this may handle the bulk of an

application’s requirements, it doesn’t account for scheduled jobs:

• A ticket purchasing system must release unclaimed tickets after some timeout of inactivity.

• An auction house must end auctions on time.
• A cellular provider should close and mail statements each month.

The EJB Timer Service may be leveraged to trigger these events and has been enhanced in the

3.1 specification with a natural- language expression syntax.

8. Discuss the classes of EJB and depict the various components of interaction with a neat diagram

Session Beans If EJB is a grammar, session beans are the verbs.Session beans contain

business methods.

Types of Session Bean
There are 3 types of session bean.
1) Stateless Session Bean: It doesn't maintain state of a client between multiple method calls.
2) Stateful Session Bean: It maintains state of a client across multiple requests.
3) Singleton Session Bean: One instance per application, it is shared between clients and supports

concurrent access.

Stateless session beans (SLSBs) Stateless session beans are useful for functions in which state

does not need to be carried from invocation to invocation. The Container will often create and

destroy instances. This allows the Container to hold a much smaller number of objects in service,

hence keeping memory footprint down.

Stateful session beans (SFSBs) Stateful session beans differ from SLSBs in that every request

upon a given proxy reference is guaranteed to ultimately invoke upon the same bean instance.

SFSB invocations share conversational state. Each SFSB proxy object has an isolated session

context, so calls to one session will not affect another. Stateful sessions, and their corresponding

bean instances, are created sometime before the first invocation upon a proxy is made to its target

instance (Figure 2-3). They live until the client invokes a method that the bean provider has

marked as a remove event, or until the Container decides to remove the session.

Singleton beans Sometimes we don’t need any more than one backing instance for our business

objects. All requests upon a singleton are destined for the same bean instance, The Container

doesn’t have much work to do in choosing the target (Figure 2-4). The singleton session bean may

be marked to eagerly load when an application is deployed; therefore, it may be leveraged to fire

application lifecycle events. This draws a relationship where deploying a singleton bean implicitly

leads to the invocation of its lifecycle callbacks. We’ll put this to good use when we discuss

singleton beans.

MDB

Asynchronous messaging is a paradigm in which two or more applications communicate via a

message describing a business event. EJB 3.1 interacts with messaging systems via the Java

Connector Architecture (JCA) 1.6 (http://jcp.org/en/jsr/detail? id=322), which acts as an abstraction

layer that enables any system to be adapted as a valid sender. The message-driven bean, in turn, is

a listener that consumes messages and may either handle them directly or delegate further

processing to other EJB components. The asynchronous characteristic of this exchange means that

a message sender is not waiting for a response, so no return to the caller is provided

Entity Beans While session beans are our verbs, entity beans are the nouns. Their aim is to express

an object view of resources stored within a Relational Database Management System (RDBMS)—

a process commonly known as object-relational mapping. Like session beans, the entity type is

modeled as a POJO, and becomes a managed object only when associated with a construct called

the javax.persistence.EntityManager, a container-supplied service that tracks state changes and

synchronizes with the database as necessary. A client who alters the state of an entity bean may

expect any altered fields to be propagated to persistent storage. Frequently the EntityManager will

cache both reads and writes to transparently streamline performance, and may enlist with the

current transaction to flush state to persistent storage automatically upon invocation completion.

Unlike session beans and MDBs, entity beans are not themselves a server-side component type.

Instead, they are a view that may be detached from management and used just like any stateful

object. When detached (disassociated from the EntityManager), there is no database association,

but the object may later be re-enlisted with the EntityManager such that its state may again be

synchronized. Just as session beans are EJBs only within the context of the Container, entity beans

are managed only when registered with the EntityManager. In all other cases entity beans act as

POJOs, making them extremely versatile.

http://jcp.org/en/jsr/detail?id=322)
http://jcp.org/en/jsr/detail?id=322)

9. Write the short note about the following

i)Persistence Context

ii)XML Deployment Descriptor

(i) Persistence Context

• A persistence context is a set of managed entity object instances .

• Persistence contexts are managed by an entity manager.

• The entity manager tracks all entity objects within a persistence context for changes and
updates made, and flushes these changes to the database using the flush mode rules

• Once a persistence context is closed, all managed entity object instances
become detached and are no longer managed.

• Once an object is detached from a persistence context, it can no longer be managed by an
entity manager, and any state changes to this object instance will not be synchronized
with the database.

• When a persistence context is closed, all managed entity objects become detached and are
unmanaged.

• There are two types of persistence contexts:

• transaction-scoped persistence context

• extended persistence context.

Transaction Scoped Persistence context

• Everything executed

• Either fully succeed or fully fail

(ii) XML Deployment Descriptor

A deployment descriptor describes how EJBs are managed at runtime and enables the
customization of EJB behavior without modification to the EJB code.

A deployment descriptor is written in a file using XML syntax.

Add file is packed in the Java Archive (JAR) file along with the other files that are

required to deploy the EJB. It includes classes and component interfaces that are necessary for

each EJB in the package.

An EJB container references the deployment descriptor file to understand how to deploy

and manage EJBs contained in package.

as well as other attributes, such as how transactions are managed.

Page 28 of 30

10. Write an EJB program that demonstrates session bean with proper business logic

Calculator.java
package package1;

import javax.ejb.Stateless;

@Stateless

public class Calculator implements CalculatorLocal

{

 @Override

 public Integer Addition(int a, int b) {

 return a+b;

 }

 @Override

 public Integer Subtract(int a, int b) {

 return a-b;

 }

 @Override

 public Integer Multiply(int a, int b) {

 return a*b;

 }

 @Override

 public Integer Division(int a, int b) {

 return a/b;

 }

}

CalculatorLocal.java

package package1;

import javax.ejb.Local;

public interface CalculatorLocal {

 Integer Addition(int a, int b);

 Integer Subtract(int a, int b);

 Integer Multiply(int a, int b);

 Integer Division(int a, int b);

}

Servlet1.java
import java.io.IOException;

import java.io.PrintWriter;

import javax.ejb.EJB;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServlet;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import package1.CalculatorLocal;

Page 29 of 30

public class Servlet1 extends HttpServlet {

 @EJB

 private CalculatorLocal calculator;

 protected void processRequest(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException

 {

 response.setContentType("text/html;charset=UTF-8");

 try (PrintWriter out = response.getWriter())

 {

 out.println("Output : "+ "
");

 int a;

 a = Integer.parseInt(request.getParameter("num1"));

 int b;

 b=Integer.parseInt(request.getParameter("num2"));

 out.println("Number1 : " + a + "
");

 out.println("Number2 : " + b+ "
");

 out.println("Addition : " + calculator.Addition(a, b)+ "
");

 out.println("Subtraction :" + calculator.Subtract(a, b)+ "
");

 out.println("Multiplication :"+calculator.Multiply(a, b)+ "
");

 out.println("Division :"+calculator.Division(a, b)+ "
");

 }

 }

 @Override

 protected void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException

 {

 processRequest(request, response);

 }

 @Override

 protected void doPost(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException

 {

 processRequest(request, response);

 }

 @Override

 public String getServletInfo()

 {

 return "Short description";

 }

}

index.jsp

<%@page contentType="text/html" pageEncoding="UTF-8"%>

Page 30 of 30

<!DOCTYPE html>

<html>

 <meta http-equiv="Content-Type" content="text/html; charset=UTF-8">

 <title>Calculator</title>

 </head>

 <body>

 <form method="get" action="Servlet1">

 Enter Number1 : <input type="text" name="num1"/>

 Enter Number2 : <input type="text" name="num2"/>

 <input type="submit" value="Submit"/>

 </form>

 </body>

</html>

	Creating a JAR File
	Benefits of JAR
	Bound Properties
	PropertyName.setBound(true)
	public void propertyChange(PropertyChangeEvent)
	private PropertyChangeSupport changes = new
	public void addPropertyChangeListener(PropertyChangeListener p)
	Implementation of Constrained Property in a Bean
	private VetoableChangeSupport vetos=new
	public void addVetoableChangeListener(VetoableChangeListener v)
	Introspection:
	Simple Properties:
	public return_type
	Ex:
	public void set<PropertyName>(data_type value)
	1. Instance Pooling/Caching
	EJB
	3. Security
	Figure 15-1. EJB security permitting access based upon the caller’s role
	4. Timers
	Transaction Scoped Persistence context
	(ii) XML Deployment Descriptor

