CMR
INSTITUTE OF
TECHNOLOGY USN
Internal Assessment Test I11 — Jan. 2022
Sub: Programming Using C# .Net
Date: 24/01//2022 | Duration: | 90 min’s | MaxMarks: | 50 [Sem: [V
Note : Answer FIVE FUL L Questions, choosing ONE full guestion from each Module
PART I

Explain WPF architecture with neat diagram.
rich user experience. It is part of the NET framework 3.0 and higher. WPF architecture is a layerec

1
Windows Presentation Framework is a next generation Ul framework to create applications with ¢

architecture which have Managed, Unmanaged and Core API layers

Presentation Framework
== o g
| Meds

- Managed Layer

Presentation Core
Visual System

ed
I—‘~| l/_Ll ~— Unmanaged
3 \>‘_\ Layer

J

MilCore
e =
‘))

OS Core Components

| Kemel | [yse2 e — — Core AP Layer

e | [| [e |

Page 1 of 15

1. Managed Layer

Managed layer has two main components — Presentation Framework and Presentation Core.

1. Presentation Framework provides the required functionalities that we need to build the
WPF applications such as controls, data bindings, styling, shapes, media, documents,
annotations, animation and more. PresentationFamework.dll is responsible for this purpose.

2. Presentation Core acts as a managed wrapper around MILCore and provides public
interface for MIL. Presentation Core is the home for WPF Visual System and provides
classes for creating application visual tree. The Visual System creates visual tree which
contains applications Visual Elements and rendering instructions. PresentationCore.dll is
responsible for this purpose.

2. Unmanaged Layer

This layer is also called milcore or Media Integration Library Core. MilCore is written in
unmanaged code in order to enable tight integration with DirectX. DirectX engine is underlying
technology used in WPF to display all graphics. allowing for efficient hardware and software
rendering. MIL has Composition System that receives rendering instructions from Visual
System and translates into data that can be understood by DirectX to render user interface.

3. Core API Layer

This layer has OS core components like Kernel, User32, GDI, Device Drivers, Graphic cards
etc. These components are used by the application to access low level APIs. User32 manages
memory and process separation.

OR
Explain in detail about the following.
1. Event driven GUI 2. MDI windows

Page 2 of 15

3

GUISs are event driven (i.e., they generate events when the program’s user interacts with the
GUI). Typical interactions include moving the mouse, clicking the mouse, clicking a but-
ton, typing in a text box, selecting an item from a menu and closing a window. Event han-
dlers are methods that process events and perform tasks. For example, consider a form that
changes color when a button is clicked. When clicked. the button generates an event and
passes it to the event handler, and the event-handler code changes the form’s color.

Each control that can generate events has an associated delegate that defines the signature
for that control’s event handlers. Recall from Chapter 10 that delegates are objects that con-
tain pointers to methods. Event delegates are multicast (class MulticastDelegate)—they
contain lists of method pointers. Each method must have the same signature (i.e., the same
list of parameters). In the event-handling model. delegates act as intermediaries between
objects that generate events and methods that handle those events (Fig. 12.5).

calls calls

/ Handler 1 for event E
Object A raises event E » Delegate for event E * Handler 2 for event E

Handler 3 for event E

Fig. 12.5 Event-handling model using delegates.

The Multiple-Document Interface (MDI) is a specification that defines a user interface for applications that enable the user to work with more

than one document at the same time under one parent form (window).

Visualize the working style of an application in which you are allowed to open multiple forms in one parent container window, and all the open
foerms will get listed under the Windows menu. Whereas having an individual window for each instance of the same application is termed as
single document interface (SDI}; applications such as Neotepad, Micresoft Paint, Calculator, and sc on, are SDI applications. SDI applications get
opened only in their own windows and can become difficult to manage, unlike when you have multiple documents or forms open inside one
MDI interface.

Hence, MDI applications follow a parent form and child form relationship model. MDI applications allow you to open, organize, and work with
multiple documents at the same time by opening them under the context of the MDI parent form; therefore, once opened, they can't be

dragged out of it like an individual form.

The parent {MDI) form organizes and arranges all the child forms or documents that are currently open. You might have seen such opticns in

many Windows applications under a Windows menu, such as Cascade, Tile Vertical, and so on.

PART Il
List and Explain Control class properties and methods.

Page 3 of 15

Control Propetrties
and Methods

Common Properties
BackColor
BackgroundImage
Enabled

Focused
Font
ForeColor

TabIndex

TabStop
Text

TextAlign

Visible

Description

Background color of the control.
Background image of the control.

Specifies whether the control is enabled (i.e.. if the user can interact
with it). A disabled control will still be displayed. but “grayed-out™—
portions of the control will become gray.

Specifies whether the control has focus.
Font used to display control’s Text.

Foreground color of the control. This is usually the color used to dis-
play the control’s Text property.

Tab order of the control. When the Tub key is pressed. the focus is
moved to controls in increasing tab order. This order can be set by the
programmer if the TabStop property is true.

If true (the default value). user can use the 7ab key to select the control.

Text associated with the control. The location and appearance varies
with the type of control.

The alignment of the text on the control. One of three horizontal posi-
tions (left. center or right) and one of three vertical positions (top. mid-
dle or bottom).

Specifies whether the control is visible.

Page 4 of 15

4

OR

Control Propetties
and Methods Description

Common Methods

Focus Transfers the focus to the control.
Hide Hides the control (equivalent to setting Visible to false).
Show Shows the control (equivalent to setting VisibTle to true).

Fig. 12.11 Control class properties and methods. (Part 2 of 2.)

Visual Studio .NET allows the programmer to anchor and dock controls, which helps
to specify the layout of controls inside a container (such as a form). Anchoring allows con-
trols to stay a fixed distance from the sides of the container. even when the control is
resized. Docking allows controls to extend themselves along the sides of their containers.

A user may want a control to appear in a certain position (top. bottom, left or right) in
a form even when that form is resized. The user can specify this by anchoring the control
to a side (top, bottom, left or right). The control then maintains a fixed distance from the
side to its parent container. In most cases, the parent container is a form: however, other
controls can act as a parent container.

When parent containers are resized, all controls move. Unanchored controls move rela-
tive to their original position on the form, while anchored controls move so that they will be
the same distance from each side that they are anchored to. For example, in Fig. 12.12, the
topmost button is anchored to the top and left sides of the parent form. When the form is
resized. the anchored button moves so that it remains a constant distance from the top and left
sides of the form (its parent). The unanchored button changes position as the form is resized.

Explain in detail about the following.
1. XAML elements 2. Markup extension classes in XAML

Page 5 of 15

XAML is a new descriptive programming language developed by Microsoft to write user interfaces
for next-generation managed applications. XAML is the language to build user interfaces for
Windows and Mobile applications that use Windows Presentation Foundation (WPF). UWP, and
Xamarin Forms.

The purpose of XAML is simple, to create user interfaces using a markup language that looks like
XML. Most of the time, you will be using a designer to create your XAML but you’re free to directly
manipulate XAML by hand.

XAML uses the XML format for elements and attributes. Each element in XAML represents an
object which is an instance of a type. The scope of a type (class, enumeration etc.) is defined as a
namespace that physically resides in an assembly (DLL) ofthe NET Framework library.

Similar to XML, a XAML element syntax always starts with an open angle bracket (<) and ends
with a close angle bracket (). Each element tag also has a starttagand an end tag. For example, a
Button object is represented by the <Button= object element. The following code snippet represents a
Button object element.

<Button></Button>
Alternatively, vou can use a self-closing format to close the bracket.
<Button /=

Anobject element in XAML represents a type. A type can be a control, a class or other objects

defined in the framework library.
TheRoot Elements

Each XAML document must havea root element. The root element usually works as a cont
defines the namespaces and basic properties of the element. Three most common root eleme
<Windows /=, <Page />, and <UserControl >. The <ResourceDirectory /= and <Applicatio
other two root elements that can be used in a XAML file.

The Window element represents a Window container. The following code snippet shows a’
element with its Height, Width, Title and x;Name attributes. The x;Name attribute of an ele;
represents the ID of an element used to access the element in the code-behind. The code snj
sets xmins and xmlns:X attributes that represent the namespaces used in the code. The x:Cla
attribute represents the code-behind class name.

Page 6 of 15

PART II1

5 Explain in detail multitier application architecture

Multi-tier Applications Architecture:

Web-based applications are multitier applications and also referred as n-tier applications.

»~ Multitier applications divide functionality into separate tiers (that is, logical groupings of functionality).
~ Tiers can be located on the same computer. the tiers of web-based applications commonly reside on

separate computers for security and scalability.

There are 3 tiers. They are:

i

Information Tier:

~ The informaticn tier also called the bottom tier.
~ It maintains the application’s data.

~ This tier typically stores data in a relational

database management system.

Example: A retail store might have a database for
storing product information. such as descriptions.
prices and quantities in stock.

The same database also might contain customer
information. such as user names. billing addresses
and credit card numbers.

~ This tier can contain multiple databases, which
together comprise the data needed for an
application.

Business Logic:

> The middle tier implements business logic.

Top tier
(Client tier} Browser User intesface
Y XHTML
Middle tier Business logic
3 | ¢ Web server implemented in
(Business logic tier) ASP NET
Bottom tier

(Information tier)

T

application

controller logic and presentation logic to control interactions between the application’s clients and its

data.

7> The middle tier acts as an intermediary between data in the information tier and the application’s clients.

#~ The middle-tier controller logic processes client requests (such as requests to view a product catalog)

and refrieves data from the database.

~ The middle-tier presentation logic then processes data from the information tier and presents the content

to the client.

» Web applications typically present data to clients as web pages.

#~ Business logic in the middle tier enforces business rules and ensures that data is reliable before the server
application updates the database or presents the data to users.

» Business rules dictate how clients can and cannot access application data. and how applications process

data.

Example: A business rule in the middle tier of a retail store’s web-based application might ensure that all

product quantities remain positive.

A client request to set a negative quantity in the bottom tier’s product information database would be rejected

by the middle tier’s business logic.

iii. Client Tier:

> The client tier. or top tier. is the application’s user interface. which gathers input and displays output.

» Users interact directly with the application through the user interface (typically viewed in a web

browser). keyboard and mouse.

» Inresponse to user actions (Example: clicking a hyperlink). the client tier interacts with the middle
tier to make requests and to retrieve data from the information tier.

~ The client tier then displays to the user the data retrieved from the middle tier.

» The chient tier never directly interacts with the information tier.

Page 7 of 15

OR

6 Explain different validation controls with suitable example supported by asp .net

RequiredFieldValidator Control:

The RequiredFieldValidator control ensures that the required field is not empty. It is generally tied to a text
to force input into the text box.

Syntax:

<asp:RequiredFieldValidator ID="rfvcandidate" runat="server"
ControlToValidate ="ddIcandidate" ErrorMessage="Please choose
a candidate" InitialvValue="Please choose a candidate">
</asp:RequiredFieldValidator>

RangeValidator Control:
The RangeValidator control verifies that the input value falls within a predetermined range.

It has three specific properties:
Properties Description
Tv It defines the type of the data. The available values are: Currency. Date,
pe Double. Integer, and String.

MinimumValue |It specifies the minimum value of the range.

MaximumValue |It specifies the maximum value of the range.

Syntax:

<asp:RangeValidator ID="rvclass" runat="server" ControlToValidate="txiclass"
ErrorMessage="Enter your class (6 - 12)" MaximumValue="12"
MinimumValue="6" Type="Integer">

</asp:RangeValidator>

CompareValidator Control:
The CompareValidator control compares a value in one control with a fixed value or a value in another con

It has the following specific properties:

Properties Description
Type It specifies the data type.
ControlToCompare |It specifies the value of the input control to compare with.
ValueToCompare It specifies the constant value to compare with.
It specifies the comparison operator. the available values are: Equal
Operator NotEqual. GreaterThan. GreaterThanEqual, LessThan. LessThanEqual
and DataTypeCheck.

Page 8 of 15

Validation control or Validator. which determines whether the data in another web control is in the proper
format.

¢ Validators provide a mechanism for validating user input on the client.

e When the page is sent to the client. the validator is converted into JavaScript that performs the validation
in the client web browser.

e JavaScript is a scripting language that executed on the client. Unfortunately. some client browsers might
not support scripting or the user might disable it.

For this reason, you should always perform validation on the server. ASP.NET validafion controls can function
on the client. on the server or both.

An important aspect of creating ASP NET Web pages for user input is to be able to check that the information
users enter is valid. ASP.NET provides a set of validation controls that provide an easy-to-use but powerful way
to check for errors and. if necessary, display messages to the user.

There are six types of validation controls in ASP.NET that listed below:
The below table describes the controls and their work:

- ValidationContrl =~ Description
RequiredFieldValidation Makes an input control a required field

Compares the value of one input control to the value of another input

control or to a fixed value

RangeValidator Checks that the user enters a value that falls between two values

RegularExpressionValidator | Ensures that the value of an input control matches a specified pattern

Allows you to write a method to handle the validation of the value
entered

ValidationSummary Displays a report of all validation errors occurred in a Web page

All these validation control classes are inherited from the BaseValidator class hence they inherit its properties
and methods that are ControlToValidate, Display, EnableClientScript, Enabled. Text, isValid. and validate()
method.

CompareValidator

CustomValidator

ValidationSummary:

The ValidationSummary control does not perform any validation but shows a summary of all errors in the page.
The summary displays the values of the ErrorMessage property of all validation controls that failed validation.
The following two mutually inclusive properties list out the error message:

++ ShowSummary : shows the error messages in specified format.
<+ ShowMessageBox : shows the error messages in a separate window.

PART IV
Explain in detail about the following.
1. Cookies 2. Session management 3.Master pages

Page 9 of 15

Cookies: Cookies provide vou with a tool for personalizing web pages. A cookie is a piece of data stored by
web browsers in a small text file on the user’s computer. A cookie maintains information about the client during
and between browser sessions.

Session tracking using the NET class HttpSessionState:

If the user clicks the link for book recommendations, the information stored in the user’s unique
HttpSessionState object is read and used to form the list of recommendations. That can be done using Session
property.

Session Property:

Every Web Form includes a user-specific HttpSessionState object, which is accessible through property Session
of class Page. We use this property to manipulate the current user's HttpSessionState object.

When a page is first requested, a unique HttpSessionState object is created by ASP.NET and assigned to the
Page’s Session property.

The session object is created from the HttpSessionState class. which defines a collection of session state items.

The HttpSessionState class has the following properties:

Properties Description
SessionID The unique session identifier.

Ttem(name) The value of the session state item with the specified name. This is the default
. property of the HitpSessionState class.

Count The number of items in the session state collection.

? Gets and sets the amount of time. in minutes, allowed between requests before
TimeOut E ; : ;
the session-state provider terminates the session.

The HttpSessionState class has the following methods:

Methods Description
Add(name, value) |Adds an item to the session state collection.
Clear Removes all the items from session state collection.
Remove(name) Removes the specified item from the session state collection.
RemoveAll Removes all keys and values from the session-state collection.
RemoveAt Deletes an item at a specified index from the session-state collection.

ASPNET master pages allow you to create a consistent layout for the pages in your application. A single
master page defines the look and feel and standard behavior that you want for all of the pages (or a group
of pages) in your application. You can then create individual content pages that contain the content you
want to display. When users request the content pages, they merge with the master page to produce

output that combines the layout of the master page with the content from the content page.

Page 10 of 15

A master page is an ASPNET file with the extension .master (for example, MySite.master) with a predefined
layout that can include static text, HTML elements, and server controls. The master page is identified by a
special @ Master directive that replaces the @ Page@ directive that is used for ordinary .aspx pages.
The directive looks like the following.

VE ™ copy

<%@ Master Language="VB" %>

The @ Master directive can contain most of the same directives that a @ ControlZ directive can contain.

For example, the following master-page directive includes the name of a code-behind file, and assigns a
class name to the master page.

VB fi Copy

<%@ Master Language="VB" CodeFile="MasterPage.master.vb" Inherits="MasterPage" %>

In addition to the @ Master directive, the master page also contains all of the top-level HTML elements for
a page, such as html, head, and form. For example, on a master page you might use an HTML table for the
layout, an img element for your company logo, static text for the copyright notice, and server controls to
create standard navigation for your site. You can use any HTML and any ASPNET elements as part of your
master page.

OR
Explain in detail about the following.
1. Script Manager Control

The ScriptManager Control

The ScriptManager control is the most important control and must be present on the page for other
controls to work.

It has the basic syntax:

<asp:ScriptManager ID="ScriptManager1" runat="server'=
</asp:ScriptManager=
If you create an 'Ajax Enabled site' or add an'AJAX Web Form' from the 'Add Item' dialog box, the

web form automatically contains the script manager control. The ScriptManager control takes care
ofthe client-side script for all the server side controls.

2. Update Panel Control

The UpdatePanel control is a container control and derives from the Control class. It acts as a
container for the child controls within it and does not have its own interface. When a control inside

it triggers a post back, the UpdatePanel intervenes to initiate the post asynchronously and update
just that portion of the page.

For example, if a button control is inside the update panel and it is clicked, only the controls within
the update panel will be affected. the controls on the other parts of the page will not be affected.
This is called the partial postback or the asynchronous post back.

PARTV
Explain in detail about ajax and its extension controls.

Page 11 of 15

10

AJAX stands for Asynchronous JavaScript and XML. This is a cross platform technology which
speeds up response time. The AJAX server controls add script to the page which is executed and
processed by thebrowser.

However like other ASP.NET server confrols, these ATJTAX server controls also can have methods
and event handlers associated with them, which are processed on the server side.

The ScriptManager Control

The ScriptManager control is the most important control and must be present on the page for other
controls to work.

It has the basic syntax:

<asp:ScriptManager ID="ScriptManager1" runat="server'=
</asp:ScriptManager=

If you create an 'Ajax Enabled site' or add an 'AJAX Web Form' from the 'Add Item' dialog box, the
web form automatically contains the script manager control. The ScriptManager control takes care
of the client-side script for all the server side controls.

The UpdatePanel Control

The UpdatePanel control is a container control and derives from the Control class. It acts as a
container for the child controls within it and does not have its own interface. When a control inside

it triggers a post back, the UpdatePanel intervenes to initiate the post asynchronously and update
just that portionofthe page.

For example, if a button control is inside the update panel and it is clicked. only the controls within
the update panel will be affected, the controls on the other parts of the page will not be affected.
This is called the partial postback or the asynchronous post back.

The UpdatePanel Control

The UpdatePanel control is a container control and derives from the Control class. It acts as a
container for the child controls within it and does not have its own interface. When a control inside

it triggers a post back, the UpdatePanel intervenes to initiate the post asynchronously and update
just that portionofthe page.

For example, if a button control is inside the update panel and it is clicked. only the controls within
the update panel will be affected. the controls on the other parts of the page will not be affected.
This is called the partial post back or the asynchronous post back.

The UpdateProgress Control

The UpdateProgress control provides a sort of feedback on the browser while one or more update
panel controls are being updated. For example, while a user logs in or waits for server response
while performing some database oriented job.

It provides a visual acknowledgement like "Loading page...". indicating the work is in progress.

The syntax for the UpdateProgress controlis:

<asp:UpdateProgress ID="UpdateProgress1" runat="server" DynamicLayout="true"
AssociatedUpdatePanelID="UpdatePanell" >

<ProgressTemplate>
Loading...

</ProgressTemplate>

</asp:UpdateProgress=

The Timer Control
The timer controlis used to initiate the post back automatically. This could be donein two ways:

(1) Setting the Triggers property of the UpdatePanel control:

<Triggers>
<asp:AsyncPostBackTrigger ControlID="btnpanel2" EventName="Click" /=
</Triggers>

OR
Write the code for implementing postal management system web application

Page 12 of 15

“using Systenm;
using Systen.Collections.Generic;
using System.Ling;
using Systen.leb;
using System.leb.UT;
using System.leb.UI.WebControls;
using System.Dsta.0laDb;
using System.Dsts;

~public pertisl class View latter : System.lieb.UZ.Page
. String connStr = E"Provider=Microsoft.ACE.OLEDB.12.9;08te Source=C: \Users'\Neha Agrewal\Docurents'db_PSM.accdb;Persist Security Info=False;”;

- protected void Page_Load(cbject sender, Eventirgs e)
f loed_Postman_details();
i:rmbli: void load Postmen details()

if (!IsPostsack)

x using {0laDbConnecticn con = naw OleDbConnection{connstr))

¢ ccn.open();

String query = "select Idares,Fostmaniene from tbl PostmanDetails";
OleDbCommand cnd = new OleDbCommand(guery, con):

Dropdownlistl.DetaSource = cond.ExecuteReader();

OropdownListl.DetaTextField = “Fostwaniiame"”;
DropDosniistl.DetavalueField = “Idirea”;

DropOowniistl.Detasind();
con.Close():
; }
OropOowniistl.Itens.Insert(8, new ListItem("--Selact Customer--", “27));
b3
= protected void DropdownListl_SelectedIndexChanged(cbject sender, Evantirgs e)
{
OleDbConnection con = new OleDbConnection{connStr);
Ty
{
con.cpen();
string query = “select IdLetter, Letteriddress from tbl Aresletters where Idires=" + DropDowniistl.Selectedvalue;
OleDbCommand cmd = nes OleDbComrand(query, con):
OleDbDetasdapter da = mew OleDbletaidaptericnd);
DataSet ds = nmew Detaset();
da.Fill(ds);
Gridviewxl.DetaSource = ds;
Gridviewl.Detasind();
con.Close():
catch (Excapticn ex)
Response.Wirite(ex.Vessage);
b
b3

3 ;mmed veid Buttonl_Click{object sender, Zventirgs e)

Page 13 of 15

<%@ Master Language="C#" AutoEventWireup="true" CodeFile="PMS.master.cs"” Inherits="PMS" %>
<IDOCTYPE html>

<html xmlns="http://www.w3.0rg/1999/xhtml">
<head runat="server”>
<titles></title>
<asp:ContentPlaceHolder id="head" runat="server">
</asp:ContentPlaceHolder>
<style type="text/css">
.auto-stylea
{
width: 119px;
height: 23px;
}
.auto-styls2

width: 689px;
height: 23px;

}
.auto-style3

{
width: 119px;
height: 443px;
}
.auto-styles
{

width: 689px;
height: 443px;

}

.auto-styles

{
width: 119px;
height: 75px;

.auto-styles
{
width: 689px;
height: 75px;
¥
</style>
</head>
<bedy>
<form id="form1”™ runat="server">
<div>
<table style="width: 91¥; height: 265px;">
<tr>
<td class="auto-styles">
<asp:Image ID="Imagei” runst="server" ImagesUrl="~/Image/postal logc.JPG" Width="137px" />
</td>
<td class="auto-styles">
<aspiImage ID="Image2” runat="server” Height="116px" ImageUrl="~/Image/postal title.JPG" Wicdth="658px" /(>
</td>

PR TN

Page 14 of 15

jusing system;

using System.Collections.Generic;
using System.Ling;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;
‘using System.Data.OleDb;

lpublic partial class PostMan_details : System.Web.UI.Page

{

String connStr = @"Provider=Microsoft.ACE.OLEDB.12.8;Data Source=C:\Users\Neha Agrawal\Documents\db_PSM.accdb;Persist Security Info=False;";

1 protected void Page_Load(object sender, EventArgs e)

{

load_areaname();

] public void load_areaname()

{
if (!IsPostBack)

{
using (OleDbConnection con = new OleDbConnection(connStr))

con.Open();

String query="select IdArea,ArealName from tbl_AreaDetails";
0leDbCommand cmd = new OleDbCommand(query, con);

DropDownListl.DataSource=cmd.ExecuteReader();
DropDownListl.DataTextField = "AreaName”;
DropDownlListl.DataValueField = "IdArea";

DropDownListl.DataBind();
con.Close();

Page 15 of 15

