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Q1 

Part-I 

Illustrate Bayesian Belief network with the help of an example. 
10 CO4 L2 

 

Q 2 

or 

Explain Expectation Maximization algorithm. 
10 CO4 L2 

 

Q 3 

Part-II 

Write short note on: 

a)Sample Error    b) True Error      c) Variance        d) Expected value       e) Confidence 

Interval 

10 CO5 L2 

 

Q 4 

or 

What is instance-based learning? Explain Case-Based reasoning method. 
10 CO5 L1 

 

Q 5 

Part-III 

Discuss the method of comparing two algorithms. Justify with paired-t method. 
10 CO5 L3 

 

Q 6 

or 

Discuss Q-learning algorithm with the help of an example. 
10 CO5 L3 

 

Q7 

Part-IV 

Explain the Distance Weighted Nearest Neighbor Algorithm. 
10 CO5 L2 

 

Q8 

or 

Explain the locally weighted linear regression. 
10 CO5 L2 

 

Q9 

Part-V 

What is reinforcement learning algorithm? Explain. 
10 CO5 L2 

 

Q10 

or 

Explain the Radial basis function (RBF) network. 
10 CO5 L3 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

CMR 

INSTITUTE OF                        

TECHNOLOGY 

                                  

 

USN           

Internal Assessment Test 3 – December. 2020 

Sub: MACHINE LEARNING Sub Code: 
18MCA

53 

Date: 

15-

12-

20

20 

Duration: 90 min’s Max Marks: 50 Sem 5th  Branch: MCA 

 

Note : Answer FIVE FULL Questions, choosing ONE full question from each Module 

 

 

  

            PART I 
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1) • Consider the setting in which we wish to learn a nondeterministic (probabilistic) function f : 

X → {0, 1}, which has two discrete output values. 
 

• We want a function approximator whose output is the probability that f(x) = 1. In other 

words, learn the target function f ` : X → [0, 1] such that f ` (x) = P(f(x) = 1) 

 

How can we learn f ` using a neural network? 
 

• Use of brute force way would be to first collect the observed frequencies of 1's and 0's for 

each possible value of x and to then train the neural network to output the target frequency 

for each x. 

 

What criterion should we optimize in order to find a maximum likelihood hypothesis for f' in this 

setting?  
• First obtain an expression for P(D|h) 

 
• Assume the training data D is of the form D = {(x1, d1) . . . (xm, dm)}, where di is the 

observed 0 or 1 value for f (xi). 
 

• Both xi and di as random variables, and assuming that each training example is drawn 

independently, we can write P(D|h) as 

 

               
 

Applying the product rule 

 
 

The probability P(di|h, xi) 

 

  
 

Re-express it in a more mathematically manipulable form, as 
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Equation (4) to substitute for P(di |h, xi) in Equation (5) to obtain 

  
 

We write an expression for the maximum likelihood hypothesis 

 

 
 

The last term is a constant independent of h, so it can be dropped 

 
 

It easier to work with the log of the likelihood, yielding 

 

 
 

Equation (7) describes the quantity that must be maximized in order to obtain the maximum likelihood 

hypothesis in our current problem setting. 

2) Step 1: Convert the data into a frequency table. 

Play Frequency 

Yes 9 

No 5 

 

Outlook Yes No 

Sunny 2 3 

Overcast 4 0 

Rain 3 2 

 

Temperature Yes No 

Hot 2 2 

Mild 4 2 

Cool 3 1 

 

Humidity Yes No 

High 3 4 

Normal 6 1 

 

Wind Yes No 

Strong 3 3 

Weak 6 2 

 

Step 2:  Create Likelihood table 

Play Frequency Likelihood 

Yes 9 9/14 

No 5 5/14 

 

Outlook Yes No 

Sunny 2/9 3/5 

Overcast 4/9 0/5 

Rain 3/9 2/5 

 

Temperature Yes No 

Hot 2/9 2/5 

Mild 4/9 2/5 

Cool 3/9 1/5 

 

Humidity Yes No 

High 3/9 4/5 

Normal 6/9 1/5 
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Wind Yes No 

Strong 3/9 3/5 

Weak 6/9 2/5 

 

Step 3:  

New instance  

X= (Outlook = Sunny, Temperature = Cool, Humidity = High, Wind = Strong) 

Play Tennis = ? 

 

P(X |Play = Yes) = P(Play = Yes) * P(Outlook = Sunny |Yes) * P(Temperature = Cool|Yes) * P(Humidity = 

High|Yes) * P(Wind = Strong|Yes) 

    = 9/14 * 2/9 * 3/9 * 3/9 * 3/9 

             = 0.0053 

 

P(X|Play = No) = P(Play = No) * P(Outlook = Sunny |No) * P(Temperature = Cool|No) * P(Humidity = 

High|No) *  P(Wind = Strong|No) 

   

  = 5/14 * 3/5 * 1/5 * 4/5 * 3/5 

  = 0.0206 

 

So: 0.0206 > 0.0053 

Result : X : PlayTennis = No 

3) • The naive Bayes classifier makes significant use of the assumption that the values of the 

attributes a1 . . .an are conditionally independent given the target value v.  
• This assumption dramatically reduces the complexity of learning the target function 

 
 

A Bayesian belief network describes the probability distribution governing a set of variables by specifying a 

set of conditional independence assumptions along with a set of conditional probabilities 
 
Bayesian belief networks allow stating conditional independence assumptions that apply to subsets of the 

variables 

 

Notation 
 

• Consider an arbitrary set of random variables Y1 . . . Yn , where each variable Yi can take on the 

set of possible values V(Yi).  
• The joint space of the set of variables Y to be the cross product V(Y1) x V(Y2) x. . .V(Yn). 

 
• In other words, each item in the joint space corresponds to one of the possible assignments of values 

to the tuple of variables (Y1 . . . Yn). The probability distribution over this joint' space is called the 

joint probability distribution. 
 

• The joint probability distribution specifies the probability for each of the possible variable 

bindings for the tuple (Y1 . . . Yn). 
 

• A Bayesian belief network describes the joint probability distribution for a set of variables. 

Representation 

 

A Bayesian belief network represents the joint probability distribution for a set of variables.  
Bayesian networks (BN) are represented by directed acyclic graphs. 

 

   

 

The Bayesian network in above figure represents the joint probability distribution over the boolean variables 

Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup 

 

A Bayesian network (BN) represents the joint probability distribution by specifying a set of conditional 

independence assumptions 
 

• BN represented by a directed acyclic graph, together with sets of local conditional probabilities  
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• Each variable in the joint space is represented by a node in the Bayesian network 
 

• The network arcs represent the assertion that the variable is conditionally independent of its non-

descendants in the network given its immediate predecessors in the network. 
 
A conditional probability table (CPT) is given for each variable, describing the probability distribution for 

that variable given the values of its immediate predecessors. The joint probability for any desired assignment 

of values (y1, . . . , yn) to the tuple of network variables (Y1 . . . Ym) can be computed by the formula 

 

      

 

Where, Parents(Yi) denotes the set of immediate predecessors of Yi in the network. 

 

Example:  
Consider the node Campfire. The network nodes and arcs represent the assertion that Campfire is 

conditionally independent of its non-descendants Lightning and Thunder, given its immediate parents Storm 

and BusTourGroup. 

 

  

This means that once we know the value of the variables Storm and BusTourGroup, the variables 

Lightning and Thunder provide no additional information about Campfire The conditional probability table 

associated with the variable Campfire. The assertion is 

 

P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4 

Inference 
 

 

• Use a Bayesian network to infer the value of some target variable (e.g., ForestFire) given the 

observed values of the other variables. 
 

• Inference can be straightforward if values for all of the other variables in the network are known 

exactly. 
 

• A Bayesian network can be used to compute the probability distribution for any subset of network 

variables given the values or distributions for any subset of the remaining variables. 

• An arbitrary Bayesian network is known to be NP-hard. 

4) THE EM ALGORITHM 

 
 

The EM algorithm can be used even for variables whose value is never directly observed, provided the 

general form of the probability distribution governing these variables is known. 

 

Estimating Means of k Gaussians 
 

 

Consider a problem in which the data D is a set of instances generated by a probability distribution that is a 

mixture of k distinct Normal distributions. 
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• This problem setting is illustrated in Figure for the case where k = 2 and where the instances are 

the points shown along the x axis.  
• Each instance is generated using a two-step process.  

o First, one of the k Normal distributions is selected at random. 
 

o Second, a single random instance xi is generated according to this selected distribution.  
• This process is repeated to generate a set of data points as shown in the figure. 

• To simplify, consider the special case 
 

o The selection of the single Normal distribution at each step is based on choosing each 

with uniform probability 
 

o Each of the k Normal distributions has the same variance σ2, known value. 

• The learning task is to output a hypothesis h = (μ1 , . . . ,μk) that describes the means of each of 

the k distributions. 
 

• We would like to find a maximum likelihood hypothesis for these means; that is, a hypothesis h 
that maximizes p(D |h). 

 

          
 

 

In this case, the sum of squared errors is minimized by the sample mean. 

        
 

• Our problem here, however, involves a mixture of k different Normal distributions, and we 

cannot observe which instances were generated by which distribution.  
• Consider full description of each instance as the triple (xi, zi1, zi2),  

• where xi is the observed value of the ith instance and 
 

• where zi1 and zi2 indicate which of the two Normal distributions was used to generate 

the value xi 
 

• In particular, zij has the value 1 if xi was created by the jth Normal distribution and 0 otherwise. 
 

• Here xi is the observed variable in the description of the instance, and zil and zi2 are hidden 

variables. 
 

• If the values of zil and zi2 were observed, we could use following Equation to solve for the means 

p1 and p2 

 

• Because they are not, we will instead use the EM algorithm. 

 

EM algorithm 



 

 
 

 

 
 

 

5) 

Sample Error – 
 
The sample error of a hypothesis with respect to some sample S of instances drawn from X is the fraction of 

S that it misclassifies. 

 

Definition: The sample error (errors(h)) of hypothesis h with respect to target function f and data sample S 

is 

 

           
Where n is the number of examples in S, and the quantity δ(f(x), h(x)) is 1 if f (x) ≠ h(x), and 0 otherwise. 

 

True Error – 
 
The true error of a hypothesis is the probability that it will misclassify a single randomly drawn instance from 

the distribution D. 

 

Definition: The true error (errorD(h)) of hypothesis h with respect to target function f and distribution D, is 

the probability that h will misclassify an instance drawn at random according to D. 

       
 

The Variance captures how far the random variable is expected to vary from its mean value. 
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Definition: The variance of a random variable Y, Var[Y], is 

 

     
 

The variance describes the expected squared error in using a single observation of Y to estimate its mean 

E[Y].  
The square root of the variance is called the standard deviation of Y, denoted σy 

 

 

The Mean (expected value) is the average of the values taken on by repeatedly sampling the random variable 

 

Definition: Consider a random variable Y that takes on the possible values y1, . . . yn. The expected value 

(Mean) of Y, E[Y], is 

 

         
 

Confidence Intervals for Discrete-Valued Hypotheses 
 
 

Suppose we wish to estimate the true error for some discrete valued hypothesis h, based on its observed 

sample error over a sample S, where 
 

• The sample S contains n examples drawn independent of one another, and independent of h, 

according to the probability distribution D 
 

• n ≥ 30  
• Hypothesis h commits r errors over these n examples (i.e., errors (h) = r/n). 

 

Under these conditions, statistical theory allows to make the following assertions: 
1. Given no other information, the most probable value of errorD (h) is errors(h) 
2. With approximately 95% probability, the true error errorD (h) lies in the interval 

 

 
 

Example: 

 

Suppose the data sample S contains n = 40 examples and that hypothesis h commits r = 12 errors 

over this data.  
• The sample error is errors(h) = r/n = 12/40 = 0.30  
• Given no other information, true error is errorD (h) = errors(h), i.e., errorD (h) = 0.30 

With the 95% confidence interval estimate for errorD (h). 

 

    
 

= 0.30 ± (1.96 * 0.07) = 0.30 ± 0.14 

 

3. A different constant, ZN, is used to calculate the N% confidence interval. The general 
expression for approximate N% confidence intervals for errorD (h) is 

 

 

Example: 
 

Suppose the data sample S contains n = 40 examples and that hypothesis h commits r = 12 errors 

over this data.  



 

• The sample error is errors(h) = r/n = 12/40 = 0.30 

With the 68% confidence interval estimate for errorD (h) 

 
= 0.30 ± (1.00 * 0.07)  
= 0.30 ± 0.07 

6) INTRODUCTION 
 

 

• Instance-based learning methods such as nearest neighbor and locally weighted regression are 

conceptually straightforward approaches to approximating real-valued or discrete-valued target 

functions. 
 

• Learning in these algorithms consists of simply storing the presented training data. When a new 

query instance is encountered, a set of similar related instances is retrieved from memory and used 

to classify the new query instance 

 

• Instance-based approaches can construct a different approximation to the target function for each 

distinct query instance that must be classified. 

 

CASE-BASED REASONING 
 

 

• Case-based reasoning (CBR) is a learning paradigm based on lazy learning methods and they 

classify new query instances by analysing similar instances while ignoring instances that are very 

different from the query. 
 

• In CBR represent instances are not represented as real-valued points, but instead, they use a rich 

symbolic representation. 

 

• CBR has been applied to problems such as conceptual design of mechanical devices based on a 

stored library of previous designs, reasoning about new legal cases based on previous rulings, and 

solving planning and scheduling problems by reusing and combining portions of previous 

solutions to similar problems. 

 

A prototypical example of a case-based reasoning 

 

 

• The CADET system employs case-based reasoning to assist in the conceptual design of simple 

mechanical devices such as water faucets. 
 

• It uses a library containing approximately 75 previous designs and design fragments to suggest 

conceptual designs to meet the specifications of new design problems. 
 

• Each instance stored in memory (e.g., a water pipe) is represented by describing both its structure 

and its qualitative function. 

 

• New design problems are then presented by specifying the desired function and requesting the 

corresponding structure. 

 

The problem setting is illustrated in below figure 
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• The function is represented in terms of the qualitative relationships among the water-flow levels and 

temperatures at its inputs and outputs. 
 

• In the functional description, an arrow with a "+" label indicates that the variable at the arrowhead 

increases with the variable at its tail. A "-" label indicates that the variable at the head decreases with 

the variable at the tail. 
 

• Here Qc refers to the flow of cold water into the faucet, Qh to the input flow of hot water, and Qm to 

the single mixed flow out of the faucet. 
 

• Tc, Th, and Tm refer to the temperatures of the cold water, hot water, and mixed water respectively. 
 

• The variable Ct denotes the control signal for temperature that is input to the faucet, and Cf 

denotes the control signal for waterflow. 

 

• The controls Ct and Cf are to influence the water flows Qc and Qh, thereby indirectly influencing 

the faucet output flow Qm and temperature Tm. 

 

   

 

• CADET searches its library for stored cases whose functional descriptions match the design problem. 

If an exact match is found, indicating that some stored case implements exactly the desired function, 

then this case can be returned as a suggested solution to the design problem. If no exact match 

occurs, CADET may find cases that match various subgraphs of the desired functional specification. 

7) Hypothesis Testing 

• Evaluates 2 mutual exclusive statement on population using sample data. 

• Steps: 

 1. Make initial Assumptions 

 2. Collect Data 

 3. Gather Evidence to Reject or accept NULL hypothesis 

• What is the probability that  

             error D(h1)   > error D(h2) 

 

COMPARING LEARNING ALGORITHMS 

•  Comparing the performance of 2 learning algorithms LA and LB. 

• A reasonable way to define “on average” is to consider the relative performance of these 2 

algorithms averaged over all the training  sets of size n over Distribution D. 

 
 

Where , 

L(S) : Hypothesis output of learning method L when given  the sample  S of training data . 

Here S ϲ D : The expected value  is taken over  samples S drawn according to the underlying instance 

distribution D. 
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Paired t Tests 

Following is the estimation procedure: 

• We are given the observed values of a set of independent, identically distributed random variables 

Y1, Y2, ….Yk. 

• We wish to estimate the mean of the probability distribution governing these Yi. 

• The estimator  will use sample mean  which is given by 

                               
 

• We can request a new training examples drawn according to the underlying instance distribution. 

Modify  the steps on each  iteration  through  the loop it generates a new random training set Si 

and a new random test set Ti by drawing from this underlying instance distribution instead of 

drawing from the fixed sample D0. 

 
10) The Q Function 

 

The value of Evaluation function Q(s, a) is the reward received immediately upon executing action a from 

state s, plus the value (discounted by γ ) of following the optimal policy thereafter 

 
 

Rewrite Equation (3) in terms of Q(s, a) as 

 

 
 

Equation (5) makes clear, it need only consider each available action a in its current state s and choose the 

action that maximizes Q(s, a). 

 

An Algorithm for Learning Q 

 

• Learning the Q function corresponds to learning the optimal policy. 
 
The key problem is finding a reliable way to estimate training values for Q, given only a sequence of 

immediate rewards r spread out over time. This can be accomplished through iterative approximation 

         
 

Rewriting Equation 
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Q learning algorithm 

 

 
 

 
 

 
 

Next Step is to associate reward value to each door. 

 
 



 

 
 

  Next Step is to create Q  matrix. 

 
 

Q-Learning Example: 

 

 
 

 


