2

a.

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Fourth Semester B.E. Degree Examination, Feb./Mar. 2022 **Design and Analysis of Algorithms**

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- Explain orders of growth for large input size and write values of following functions for 1 analysis of algorithms: $Log_2 n, n, n^2, n^3, 2^n, n!$ (10 Marks)
 - Explain asymptotic notations of algorithms with graph.

(06 Marks)

Define space complexity of algorithms with example.

(04 Marks)

- - Write general plan for analyzing time efficiency of non-recursive algorithms and find the running time of matrix multiplication algorithm. (10 Marks)
- Write short note on stacks, queues, graphs trees and sets. b.

(10 Marks)

Module-2

- 3 Define divide and conquer technique and write steps to search the number 14 in the following sequence using binary search algorithm: 74, 32, 18, 12, 76, 14, 23, 28, 10 (10 Marks)
 - Sort the following numbers using Quick sort algorithm: 54, 26, 93, 17, 77, 31, 44, 55, 20

(10 Marks)

Solve the following matrix multiplication using Strassen's matrix multiplication method:

$$A = \begin{bmatrix} 3 & 2 \\ 5 & 6 \end{bmatrix} \quad B = \begin{bmatrix} 5 & 6 \\ 1 & 3 \end{bmatrix} \quad C = A \times B$$

(10 Marks)

Solve the following topological sorting problem using source removal algorithm. (05 Marks)

Fig.Q.4(b)

Write the MaxMin divide and conquer algorithm.

(05 Marks)

Module-3

5 Solve the following Job sequencing with deadline problem and find the maximum profit:

Jobs	J1	J2	J3	J4	J5	J6	J7	J8	J9
Profit	85	25	16	40	55	19	92	80	15
Deadline	5	4	3	3	4	5	2	3	7

(10 Marks)

Construct a Huffman Tree for the following data and obtain its Huffman code:

Character	a	b	С	d	e	f
Frequency	5	9	12	13	16	45

(10 Marks)

Define minimum cost spanning tree and find the minimum cost spanning tree for the following group using Kruskal's algorithms. (10 Marks)

Sort the following sequence using Heapsort algorithm:

15, 19, 10, 7, 17, 16

(10 Marks)

Module-4

Find a minimum cost path from s to t in the multistage graph of Fig.Q.7(a), using Dynamic Programming Forward approach. (10 Marks)

Fig.Q.7(a)

CMRIT LIBRARY BANGALORE - 560 037

Solve the following Knapsack problem using Dynamic programming: Knapsack capacity W = 5

Item	Weight	Value
1	2	12
2	1	10
3	3	20
4	2	15

(10 Marks)

OR

8 a. Find all pairs shortest path for the following graph using Floyd's algorithm:

(10 Marks)

b. Find the single source shortest path in the following graph using Bellman Ford algorithm.

(10 Marks)

BANGALORE - 560 037

Module-5

9 a. Let W = {5, 7, 10, 12, 15, 18, 20} and M = 35 find all the possible subsets of W that sum to M. Apply sum of subset algorithm. (08 Marks)

b. Define Backtracking technique.

(02 Marks)

c. Explain NP-Hard and NP-complete problems.

(10 Marks)

OR

10 a. Solve the following assignment problem using Branch and Bound technique:

A	Job1	Job2	Job3	Job4
Person A	79	2	7 🐙	8
Person B	6	4 4	3	7
Person C	5	8	1	8
Person D	7	6	9	4

b. Draw the state-space tree of solving the four queen using Backtracking.

(10 Marks)

Write short note on LC Branch and Bound solutions.

(05 Marks)

(05 Marks)