Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

Compute the target address for the following machine instructions. 1

Given: (x) = 000690 (B) = 006030 (PC) = 003060

i) 032600 ii) 026030 iii) 0310C303 iv) 010030.

(04 Marks)

b. Explain the registers, instruction formats and addressing modes of an SIC/XE machine.

(06 Marks)

Write an algorithm for a one-pass macro processor.

(06 Marks)

Detail about PASS-1 algorithm of a two-pass assembler.

(06 Marks)

Generate the object program for the SIC/XE machine code. Given LDX = 04, LDA = 00, ADD = 18, LDB = 68, TIX = 2C, JLT = 38, STA = OC, RSUB = 4C.

SUM	START	2000
FIRST	LDX	#100
	LDA	#13
	+LDB	#TABLE 2
2	BASE	TABLE 2
LOOP	ADD	TABLE, X
	ADD	TABLE 2, X
	TIX	COUNT
	JLT	LOOP
- 7	+STA	TOTAL
	RSUB	4
COUNT	RESW	1
TABLE	RESW	1000
TABLE2	RESW	300
TOTAL	WORD	10
	END	FIRST

(10 Marks)

Module-2

- Describe the different data structures used for a linking loader. (08 Marks) 3
 - What do you understand by the term relocating loaders? Explain the method for relocation (08 Marks) as a part of object program.

OR

Write the SIC/XE source code for a simple bootstrap loader.

(05 Marks)

Explain dynamic linking with suitable diagram.

(05 Marks)

Describe the facilities available in MS-DOS linker for program liking.

(06 Marks)

1 of 2

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages.

Module-3 Contrast between complier and interpreter. (03 Marks) Detail the different phases of a complier. Show the compilation process for the given input: (10 Marks) POS := init + rate * 40Define pattern, token and lexeme with an example each. (03 Marks) OR What is the need for 2-Buffering technique in lexical analysis? Write an algorithm for 6 (07 Marks) lookahead code with sentinels. b. Build the regular definition and construct the transition diagram to recognize the given tokens: Unsigned number i) ii) identifier iii) relop (<, <= (09 Marks) Formulate the ruler for constructing FIRST and FOLLOW sets. (06 Marks) 7 Construct the predictive parsing table by making necessary changes to the grammar given below and parse the given input string: $aa + a * s \rightarrow ss + /ss*/a$ (10 Marks) OR State shift-reduce parsing. Explain the conflicts that may occur during shift-reduce parsing 8 (06 Marks) with an example. Find the handler for the given right sentential form and construct the shift-reduce parses. Right sentential form: id + id * id Given: $E \rightarrow E + T \mid T$ $T \rightarrow T *F|F$ $F \rightarrow (E) id$ (06 Marks) (04 Marks) Discuss errors recovery technique of parser. Module-5 Define inherited and synthesized attributes. Give example for each. (04 Marks) Give the L-attributed SDD for simple desk calculator and draw the annotated parse free and dependency graph for the expression: 4 + 6 * 2n. (08 Marks) Create the syntax tree and dependency graph for the expression : a - 4 + c. (04 Marks) Build Directed Acyclic Graph (DAG) and steps for constructing the DAG along with SDD 10 for the given expression : a + a * (b - c) + (b - c) * d. (06 Marks) (10 Marks) b. Explain the issues in the design of code generation.