

Eighth Semester B.E. Degree Examination, Feb./Mar. 2022 **Experimental Stress Analysis**

Time: 3 hrs.

Max. Marks: 80

15ME832

	Λ	ote: Answer any FIVE full questions, choosing ONE full question from each mo	dule.
		Module-1	
1	a.	Explain generalized measurement system with the help of neat sketch.	(08 Marks)
•	b.	Elaborate the different types of experimental errors.	(08 Marks)
_		OR	(00 Mayles)
2	a.	Derive the equation for sensitivity of potentiometer circuit.	(08 Marks) (08 Marks)
	b.	What are the environmental effects on performance of strain gauge?	(00 Marks)
		Module-2	
3	a.	Sketch the different strain gauge rosettes.	(06 Marks)
	b.	A three element rectangular strain rosette is applied on a area in such a manner	that gauge
		'q' makes a positive angle of 30° with gauge 'p' and gauge 'r' makes a positive a	ingle of 45°
		with gauge 'q'. The strain readings obtained from gauges are as follows:	
		Gauge p \rightarrow 600 µcm/cm, gauge q \rightarrow 300 µcm/cm and for gauge r \rightarrow 400 µcm/cm	1
		Calculate principal strains, principal stresses and principal directions.	
		Take $E = 2 \times 10^6 \text{ kg/cm}^2$ and $\gamma = 0.3$.	(10 Marks)
		OR O	
ļ	a.	Explain working of hydraulic dynamometer.	(05 Marks)
	b.	Elaborate working of proving ring.	(05 Marks)
	c.	Describe the use of elastic members for force measurements.	(06 Marks)
_		Module-3	(08 Marks)
5	a.	Define and derive stress optic law. Explain calibration of photoelastic model material using a tensile specimen.	(04 Marks)
	b.	Explain fringe multiplication.	(04 Marks)
	c.	Explain imige multiplication.	(
		OR	
6	a.	What are the ideal properties of photoelastic model material?	(08 Marks)
	b.	Elaborate model to prototype scaling.	(08 Marks)
		Module-4	
7	a.	With neat sketch, explain scattered light polariscope.	(08 Marks)
,	b.	Describe stress freezing method of three dimensional photo elasticity.	(08 Marks)
	0.		
		OR	
8	a.	Explain reflection polariscope.	(08 Marks)
	b.	Derive equation relating stresses in birefringent coating and the model.	(08 Marks)
		Module-5 CMPIT (IBRAR)	,
9	a.	Elaborate the various crack detection methods. CMRIT LIBRARY BANGALORE - 560 037	(08 Marks)
,	b.	Explain the different crack patterns obtained in brittle coating.	(08 Marks)
	0.		
		OR	(00 Marles)
10	a.	Explain the formation of Moire fringes by mechanical interference.	(08 Marks) (08 Marks)
	b.	Describe the displacement approach for Moire fringe analysis.	(00 Marks)