Time: 3 hrs.

17EE44

Electric Motors

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

What is back emf? Explain its significance. 1

(06 Marks)

Derive expression for the torque of a DC motor.

(06 Marks)

- A 250V DC motor has a $R_a = 0.08\Omega$. When connected to 250V DC supply it develops a back emf of 242V at 1500rpm. Determine:
 - Armature current
 - Armature current at start ii)
 - Back emf if armature current is changed to 120A iii)
 - The speed of the machine if it is operated as a generator in order to deliver an armature iv) (08 Marks) current of 87A at 250V.

- Explain the different methods of controlling speed of a DC shunt motor. (06 Marks) 2
 - Explain the necessity of starter for a DC motor and explain the operation of a 3 point starter with a neat sketch. (08 Marks)
 - Draw and explain the characteristics of a DC series motor.

(06 Marks)

Module-2

- Enumerate the various losses in a DC machine, which of these losses are constant, 3 Proportional to current and Proportional to current square? (06 Marks)
 - b. With a neat circuit diagram, explain the importance and procedure of conducting Swinburne test on DC motor. List the advantages of this test. (08 Marks)
 - c. Describe the Hopkinson's test for 2 identical shunt motors indicating how the efficiency of each machine on full load is obtained. (06 Marks)

OR

- Derive torque equation for a 3ϕ induction motor and derive condition for maximum torque. (08 Marks)
 - b. Discuss the complete torque-ship characteristics of a 3φ induction motor including motoring, (08 Marks) generating and braking regions.
 - A 4 pole, 3 \$\phi\$ induction motor is supplied from 50Hz supply. Determine its synchronous speed. On full load, its speed is observed to be 1410rpm. Calculate its full load slip.

(04 Marks)

Module-3

- Starting from the fundamentals develop the equivalent circuit of a polyphase induction 5 motor and explain how mechanical power developed is taken care in the equivalent circuit. (10 Marks)
 - Describe the constructional features of a double cage and deep bar rotors of induction motor (10 Marks) and explain its operation.

OR

6 a. Draw the circle diagram for a 20HP, 50Hz, 3φ phase, star connected induction motor with the following data:

No load test:	400V	9A	0.2pf lagging
Blocked rotor test:	200V	50A	0.4pf lagging

Determine the current, efficiency and slip for full load condition from the circle diagram.

(14 Marks)

b. Explain the phenomenon of cogging and crawling in a 3\phi Induction Motor.

(06 Marks)

Module-4

- a. Name the different methods of starting a squirrel cage Induction Motor. Explain Y-Δ starter of 3-ph induction motor with a suitable diagram.
 - b. Describe the different speed control methods of a 3φ Induction Motor.

7

(10 Marks)

OF

- 8 a. Explain double field revolving theory as applied to a single phase Induction Motor and prove that it cannot produce any starting torque. (10 Marks)
 - b. With a schematic connection diagram, explain the construction, working and applications of capacitor start Induction Motor. (10 Marks)

CMRIT LIBRARY

Module-5

BANGALORE - 560 037

- 9 a. State the methods of starting synchronous motor. Explain any one in detail. (06 Marks)
 - b. Why synchronous motors are not self starting? Explain with a neat sketch. (06 Marks)
 - c. Explain the effect of variable load with constant excitation on synchronous motor. (08 Marks)

OR

- 10 a. Explain the operation of synchronous motor at constant load variable excitation. (06 Marks)
 - b. Explain V and Inverted V curves of synchronous motor.

(06 Marks)

c. Explain the working, characteristics and applications of universal motor.

(08 Marks)