

18EC55

Fifth Semester B.E. Degree Examination, Feb./Mar. 2022 **Electromagnetic Waves**

Time: 3 hrs.

CMR

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- State and explain Coulomb's Law. Also express in Vector form. (06 Marks) 1
 - Derive the expression for electric field intensity due to infinite line charges. (08 Marks)
 - Find the electric field at a point P(2, 15, 13)m due to the uniform line charge density ρ_L = 25nc. Given that a perpendicular to drawn from A meets the line charge at a point (06 Marks) B(3, 0, 4)m.

OR

- A charge $Q_2 = 121 \times 10^{-9}$ C is located in free space at $P_2(-0.03, 0.01, 0.04)$ m. Find the force 2 on Q_2 due to Q_1 where $Q_1 = 110 \times 10^{-6}$ C at P_1 (0.03, 0.08, -0.02)m. (06 Marks)
 - b. Define Electric Field Intensity. Derive the expression for Electric field at a point due to may (08 Marks)
 - Derive the expression for field due to continuous volume charge distribution. (06 Marks)

Module-2

State and explain Gauss Law. 3

(06 Marks)

- Evaluate both sides of divergence theorem for the field $D = 2xy\overline{ax} + x^2\overline{ay}$ c/m² and the rectangular parallel piped formed by the planes x = 0 and y = 1, y = 0 and y = 2, z = 0 and 3. (10 Marks)
- Show that electric field intensity is negative potential gradient.

(04 Marks)

Obtain the expression for the work done in moving a point charge in an electric field.

(06 Marks)

Derive the expression for equation of continuity.

(08 Marks)

c. Give $V = 2x^2y - 5z$ at point P(-4, 3, 6). Find the potential, electric field intensity and volume (06 Marks) charge density.

Module-3

- Solve the Laplace's equation to find the potential field in the homogeneous region between 5 the two concentric conducting sphere with radii a and b such that b > a. If potential V = 0 at r = b and $V = V_0$ at r = a. Also find Electric field intensity. (10 Marks)
 - b. If the magnetic field intensity in a region is $H = (3y 2)az + 2 \times ay$. Find the current density (04 Marks) at the origin.
 - State and explain Biot Savart's law.

(06 Marks)

OR

State and prove Uniqueness theory.

(08 Marks)

- Determine whether or not the following potential fields satisfy the Laplace's equation.
 - $V = x^2 y^2 + z^2$
- ii) $V = r \cos \phi + z$.

(08 Marks)

Explain the concepts of Scalar Potential.

(04 Marks)

Module-4

- a. Derive an expression for force between differential current elements. (06 Marks)
 - b. Obtain the boundary conditions at the interface between two magnetic materials. (10 Marks)
 - c. Find the magnetization in a magnetic material, where
 - i) $\mu = 1.8 \times 10^{-5}$ H/m and H = 120 A/m ii) B = 300 μ T and suspectibility = 15.

(04 Marks)

(04 Marks)

(10 Marks)

OR

- 8 a. State and explain Faraday's law of Electromagnetic Induction. Show its equation in differential form and integral form. (10 Marks)
 - b. A point charge Q = 18nc has a velocity of 5×106 m/s in the direction $a_v = 0.6 \, \overline{a_x} + 0.75 \, \overline{a_y} + 0.3 \, \overline{a_z}$. Calculate the magnitude of force exerted on the charge by the
 - field i) $\overline{E} = -3\overline{a_x} + 4\overline{a_y} + 6\overline{a_z}$ Kv/m ii) $\overline{B} = -3a_x + 4\overline{a_y} + 6\overline{a_z}$ MT
 - iii) \overline{B} and \overline{E} acting together. (06 Marks)

 c. A conductor of length 4m long lies along the Y axis with a current of 10 Amp in the $\overline{a_y}$ direction. Find the force on the conductor if the field in the region is $B = 0.005 \, \overline{a_x}$ tesla.

Module-5

- 9 a. What is meant by Uniform Plane Wave? Derive the expression for Uniform Plane Wave in the free space. (10 Marks)
 - b. Let $\mu = 10^{-5} \text{H/m}$, $\epsilon = 4 \times 10^{-9} \text{F/m}$, $\sigma = 0$ and $\rho_{\text{V}} = 0$. Determine 'K' so that each of the following pair of fields satisfies Maxwell's equation:
 - i) $\vec{D} = 2x \hat{a}_x 3y \hat{a}_y + 4z \hat{a}_z nC/m^2$, $\vec{H} = Kx \hat{a}_x + 10y \hat{a}_y 25z \hat{a}_z A/m$
 - ii) $\vec{E} = (20y kt)\hat{a}_x V/m$, $\vec{H} = (y + 2 \times 10^6 t)\hat{a}_z A/m$. (10 Marks)

OR

CMRIT LIBRARY

- 10 a. State and explain Poynting's theorem.

 BANGALORE 560 037
 - b. Discuss Wave propagation in good conducting medium. (06 Marks)
 - c. Find the frequency at which conduction current density and displacement current density are equal in a medium with $\sigma = 2 \times 10^{-4}$ $\sigma = 81$. (04 Marks)