

USN

15EC54

Fifth Semester B.E. Degree Examination, Feb./Mar. 2022
Information Theory and Coding

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. For the rolling of two dices, obtain the probability of obtaining the sum 10 and also the probability of obtaining a sum greater than or equal to 10. (04 Marks)
 - b. The output of an information source contains 160 symbols, 128 of which occur with a probability of 1/256 and remaining with a probability of 1/64 each. Find the average information rate of source if source emits 10,000 symbols/sec. (04 Marks)
 - c. Consider Markoff source shown in Fig. Q1(c). Find
 - i) State probabilities ii) State entropies viii) Source entropy.

(08 Marks)

Fig. Q1(c)

OR

- 2 a. Derive an expression for average information content (entropy) of long independent messages. (04 Marks)
 - b. For the source model shown in Fig. Q2(b), find the source entropy and the average information content per symbol in messages containing one, two and three symbols.

(12 Marks)

Module-2

- 3 a. Consider a source with source alphabets S = (A, B, C, D) with corresponding probability P = (0.1, 0.2, 0.3, 0.4). Find the code words for symbol using Shannon's algorithm. Also find the source efficiency and redundancy. (08 Marks)
 - b. Consider a system emitting one of the three symbols A, B, and C with respective probabilities 0.7, 0.15 and 0.15. Calculate its efficiency and redundancy. (04 Marks)
 - c. Write note on Kraft Mc. Millan inequality.

(04 Marks)

OR

4 a. Find the codewords for the source using Shannon Fano algorithm. Also find source efficiency and redundancy. S = (A, B, C, D, E, F) P = (0.10, 0.15, 0.25, 0.35, 0.08, 0.07).

b. Construct a quaternary Huffman code for the following set of message symbols with respective probabilities:

Α	В	C	D	E	F	G	Н
0.22	0.2	0.18	0.15	0.1	0.08	0.05	0.02

Also find efficiency and redundancy.

(06 Marks)

c. Explain steps in Shannon's encoding algorithm for generating Binary codes.

(05 Marks)

Module-3

5 a. For the JPM given, find all the entropies.

$$P(x, y) = \begin{bmatrix} 0.05 & 0 & 0.20 & 0.05 \\ 0 & 0.10 & 0.10 & 0 \\ 0 & 0 & 0.20 & 0.10 \\ 0.05 & 0.05 & 0 & 0.10 \end{bmatrix}.$$
 (06 Marks)

b. Show that H(X, Y) = H(X/Y) + H(Y).

(04 Marks)

c. For the channel matrix given, find the capacity of the channel.

$$P(Y/X) = \begin{bmatrix} 0.8 & 0.1 & 0.1 \\ 0.2 & 0.6 & 0.2 \\ 0.2 & 0.2 & 0.6 \end{bmatrix}.$$
 (06 Marks)

OR

6 a. For the channel matrix given, find the missing entries. Also draw the corresponding channel diagram.

$$P(Y/X) = \begin{bmatrix} 0.8 & * & 0.2 \\ * & 0.6 & 0.2 \\ 0.2 & 0.3 & * \end{bmatrix}.$$
 (04 Marks)

b. Noise matrix of a binary symmetric channel is illustrated below which has following source symbol probabilities:

moof probabilities:

$$P(x_1) = \frac{2}{3}, \quad P(x_2) = \frac{1}{3} \qquad P(Y/X) = \begin{bmatrix} 3/4 & 1/4 \\ 1/4 & 3/4 \end{bmatrix}$$

i) Determine H(X), H(Y), H(X, Y), H(Y/X) and I(X, Y).

(08 Marks)

ii) Determine Channel capacity.

c. Show that H(X, Y) = H(Y/X) + H(X).

(04 Marks)

Module-4

7 For the following (6, 3) systematic LBC.

- i) Find all code vectors.
- ii) Draw encoder circuit for above code.
- iii) Find minimum Hamming weight.
- iv) Find error detecting and error correcting capability.
- v) Draw syndrome calculation circuit.
- vi) Find syndrome of received vector (101111) and correct error if any.

(16 Marks)

OR

8 a. For a systematic (7, 4) LBC, parity matrix is

 $[P] = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$

- i) Find all possible code vectors.
- ii) Draw corresponding encoder and syndrome calculation circuit.
- iii) Detect and correct the single bit error in following received vectors:

 $R_A = [0\ 1\ 1\ 1\ 1\ 0]$; $R_B = [1\ 0\ 1\ 1\ 1\ 0\ 0]$; $R_C = [1\ 0\ 1\ 0\ 0\ 0\ 0]$. (12 Marks) b. Define Hamming weight, Hamming distance and Minimum distance of LBC with examples. (04 Marks)

W-1-162

- 9 Consider (3, 1, 2) convolution code with $g^{(1)} = (110)$, $g^{(2)} = (101)$, $g^{(3)} = (111)$.
 - i) Find constraint length.
 - ii) Find the rate.
 - iii) Draw encoder block diagram.
 - iv) Find generator matrix.
 - v) Find codeword for message sequence (11101) using time domain approach.
 - vi) Repeat (v) using transfer domain approach.

(16 Marks)

(08 Marks)

CMRIT LIBRARY

BANGALORE - 560 037

OR

10 a. Write short notes on Golay codes and BCH codes.

b. Consider a (2, 1, 2) convolution code with generator polynomial g₁(101) and g₂(011). Draw encoder diagram. Find encoded sequence for input (101101) using time domain and transfer domain approach. (08 Marks)