# CRCS SCIENT

| USN                                                                                | STI        |                                                                                                                                                                      | 18EC72                   |
|------------------------------------------------------------------------------------|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|
| 0/                                                                                 | Control of | Seventh Semester B.E. Degree Examination, Feb./Mar. 2022                                                                                                             | ř = -                    |
| * 12411                                                                            |            |                                                                                                                                                                      |                          |
| E. C.                                                                              | Mo         | VLSI Design                                                                                                                                                          |                          |
| Tin                                                                                | ne.        | 3 hrs. Max. Ma                                                                                                                                                       | arks: 100                |
|                                                                                    | 6.44       |                                                                                                                                                                      |                          |
| Note: Answer any FIVE full questions, choosing ONE full question from each module. |            |                                                                                                                                                                      |                          |
|                                                                                    |            | Module-1                                                                                                                                                             |                          |
| 1                                                                                  | a.         | With necessary circuit diagram, explain the operation of tristate inverter. Also real                                                                                | lize a 2:1               |
|                                                                                    |            |                                                                                                                                                                      | (08 Marks)               |
|                                                                                    | b.         | Implement a D flipflop using transmission gates and explain its operation with                                                                                       |                          |
|                                                                                    |            |                                                                                                                                                                      | (08 Marks)               |
|                                                                                    | c.         | Realize CMOS compound gate for the function $Y = A(B+C) + DE$ .                                                                                                      | (04 Marks)               |
|                                                                                    |            |                                                                                                                                                                      |                          |
|                                                                                    |            | OR                                                                                                                                                                   |                          |
| 2                                                                                  | a.         | Explain the operation of MOSFET with necessary diagrams. Also derive the eq                                                                                          | -                        |
|                                                                                    | 1          |                                                                                                                                                                      | (10 Marks)               |
|                                                                                    | b.         | Draw the circuit of CMOS inverter and explain its DC transfer characteristics.<br>Explain the following non-ideal effects channel length modulation, mobility degrad | (06 Marks)               |
|                                                                                    | c.         | Explain the following hon-ideal cheets channel length modulation, modify degrae                                                                                      | (04 Marks)               |
|                                                                                    |            |                                                                                                                                                                      | ,                        |
|                                                                                    |            | Module-2                                                                                                                                                             |                          |
| 3                                                                                  | a.         |                                                                                                                                                                      | (12 Marks)               |
|                                                                                    | Ъ.         | What is scaling. Compute drain current, power, current density and power d                                                                                           |                          |
|                                                                                    |            | constant field and constant voltage scaling.                                                                                                                         | (08 Marks)               |
|                                                                                    |            |                                                                                                                                                                      |                          |
| 4                                                                                  |            | OR                                                                                                                                                                   |                          |
| 4                                                                                  | a.         |                                                                                                                                                                      | (08 Marks)               |
|                                                                                    | b.         | Mention different types of MOSFET capacitances and explain with necessary dia                                                                                        | _                        |
|                                                                                    | ^          |                                                                                                                                                                      | (06 Marks)<br>(06 Marks) |
|                                                                                    | c.         | with fleat diagram, explain famoda based design fules for wifes and contacts.                                                                                        | (00 Marks)               |
|                                                                                    | , da       | Module-3                                                                                                                                                             |                          |
| 5                                                                                  | а          | Develop the RC delay model to compute the delay of the logic circuit and calculate                                                                                   | e the delay              |
| ·                                                                                  |            | of unit sized inverter driving another unit inverter.                                                                                                                | (08 Marks)               |
|                                                                                    | b.         | Explain Cascode Voltage Switch Logic (CVSL). Also realize two input AND/NA                                                                                           | ND using                 |
|                                                                                    |            | CVSL.                                                                                                                                                                | (06 Marks)               |
|                                                                                    | c.         | Explain linear delay model. Compare the logical efforts of the following gates wi                                                                                    | th the help              |
|                                                                                    |            | of schematic diagrams:                                                                                                                                               | (0.00 1.)                |
|                                                                                    |            | i) 2-input NAND gate ii) 3-input NOR gate.                                                                                                                           | (06Marks)                |
|                                                                                    |            | OR                                                                                                                                                                   |                          |

Explain: i) pseudo nMOS ii) ganged CMOS with necessary circuit examples. (06 Marks) 6 Estimate t<sub>pdf</sub> and t<sub>pdr</sub> of a 3-input NAND gate if the output is loaded with h identical gates. Use Elmore delay model. (08 Marks)

c. Explain skewed gates with an example.

# Module-4

- 7 a. With necessary circuit diagrams, explain resettable latches with
  - i) synchronous reset

ii) asynchronous reset.

(08 Marks)

b. Compute the output voltage  $V_{out}$  in the following pass transistor circuits. Assume  $V_t = 0.7$ . (Ref. Fig.Q7(b)).



Fig.Q7(b)

(06 Marks)

c. With necessary diagram, explain a D flipflop with two-phase non-overlapping clocks.

(06 Marks)

### OR

- 8 a. With necessary circuit diagram explain 3-bit dynamic shift register with depletion load.
  (08 Marks)
  - b. Realize  $F = A_1A_2A_3 + B_1B_2$  using dynamic CMOS logic. Also explain the cascading problem in dynamic logic with necessary example. (08 Marks)
  - c. Explain the general structure of ratioless synchronous dynamic logic with relevant diagram.

    (04 Marks)

## Module-5

9 a. With necessary circuit diagram, explain the operation of three transistor DRAM cell.

(08 Marks)

b. Explain full CMOS SRAM cell with necessary circuit topology.

(08 Marks)

- c. Explain the terms:
  - i) Observability
  - ii) Controllability
  - iii) Fault coverage.

CMRIT LIBRARY BANGALORE - 560 037

(04 Marks)

# OR

10 a. What is a fault model? Explain stuck-at model with examples.

(07 Marks)

- Mention the approaches used in design for testability. Explain scan based testing using necessary diagrams.
- c. Draw the circuit of 3-bit BIST register and explain.

(06 Marks)