


Internal Assessment Test 1 Scheme of Evaluation

Sub:	HYDROLOGY AND IRRIGATION ENGIEERING	Sub Code:	17CV73	Branch	CIVIL
					OBE
			Marks	СО	RBT
1	Explain Horton's Engineering representation of hydrological coneat sketch.	cycle, with	[08]	CO1	L2
	Atmosphere				
	Sublination Welt Evaporation Precipitation Precipitation Precipitation Precipitation Approximation Frequency Approximation Frequency Approximation Approximation Frequency Approximation A	Evaporation			
	Infiltration Exfiltration Vapor diffusion Streams, lakes, and rivers Soil Interflow Surface runoff Groundwater	7	3M		
	Figure 1.1 is a schematic representation of the hydrologic cycle. A constarting point to describe the cycle is in the oceans. Water in the oceans evapor to the heat energy provided by solar radiation. The water vapour moves upward forms clouds. While much of the clouds condense and fall back to the oceans a part of the clouds is driven to the land areas by winds. There they conde	orate due ards and s as rain,			
	precipitate onto the land mass as rain, snow, hail, sleet, etc. A part of the precimal precipitate onto the land mass as rain, snow, hail, sleet, etc. A part of the precimal evaporate back to the atmosphere even while falling. Another part may be either evaporated back to atmosphere or move down to the ground surface infiltration of the water that reaches the ground enters the earth's surface infiltration, enhance the moisture content of the soil and reach the groundwated Vegetation sends a portion of the water from under the ground surface back atmosphere through the process of transpiration. The precipitation reaching the surface after meeting the needs of infiltration and evaporation moves down the slope over the surface and through a network of gullies, streams and rivers to rocean. The groundwater may come to the surface through springs and other after spending a considerably longer time than the surface flow. The portion precipitation which by a variety of paths above and below the surface of the reaches the stream channel is called the runoff. Once it enters a stream channel becomes stream flow.	pe inter- which it urface. through er body. k to the e ground e natural each the r outlets n of the he earth	5M		

Define Precipitation. Explain different types precipitation	[08]	CO1	L2
The term <i>precipitation</i> denotes all forms of water that reach the earth from the atmosphere. The usual forms are rainfall, snowfall, hail, frost and dew. Of all these, only the first two contribute significant amounts of water. Rainfall being the predominant form Precipitation is classified according to the factors responsible for lifting and subsequent cooling. Types of precipitation are: 1) Cyclonic precipitation:	2M		
A cyclone i's a longe low pressure			
region cee'th circular ceind motion.			
St is caused by the litting of an			
air mass due to the pressure difference. It			
LOW poursure occurs in an area, air will			
in the the potession			
Cuclonic Boulding			
in the one colore.	2 M		
the precipitation is called the frontal cycleri			
· c poucipitation.			
in this type of precion the			
which is woomen than the sconounding			
sur to socalised heating sie's es because			
lesser density. Air from cooler scornounds			
to take up its place thus setting up a c			
all. The warm air continues to vise, under			
cooling & results in precipitation. Dependi	2M		
the moistone, thermal & other conditions &			
showers to thursdesstooms can be excepted in			
-ve precipitation.			
3) Orographic Precipitation			
Congraphic precipitation is comed			
by any masses which smike some natural			
toplagraphic booviers like mountains, and			
connat more forward & hence, suise up			
causing condensation & porecipitation. Thus;			
mountain sianger, the windward stoples			
have heavy precipitation and the leeward	2M		
slopes light mainfall.			
mountain Lee would direction			
Rainfalle orland			
water Body			
			Ī

The normal annual rainfall of stations A, B, C and D in a catchment are 809.7, 675.9, 762.8, 920.1 mm respectively. In the year 2016, the station D was inoperative when station A, B, C recorded annual rainfall of 911.1, 722.3, and 798.9 mm respectively. Estimate the missing rainfall at D in the year 2016 by normal ratio method.	[08]	CO1	L3
Stanons NA_RE A 809.7 mm = NA B 675.9 mm = NB C 762.8 mm = Nc D 920.1 mm = ND PACROLE) = 911.1 mm	1M		
PBC2016) = 722.3mm Pc(2016) = 738.9mm PD(2016) = ?	1M		
$P_{D} = \frac{1}{M} \left[\frac{N_{D}}{N_{A}} P_{A} + \frac{N_{D}}{N_{B}} P_{B} + \frac{N_{D}}{N_{C}} P_{C} \right]$ $= \frac{1}{3} \left[\frac{920.1}{209.7} 911.1 + \frac{920.1}{675.9} 322.3 + \frac{920.1}{762.8} 998.9 \right]$	3M		
Pp = 994.8 mm for the year 2016.	3M		
Describe Double mass curve technique used to check consistency of rainfall data and adjust rainfall records. The checking for inconsistency of a record is done by the double-mass curve technique. This technique is based on the principle that when each recorded data comes from the same parent population, they are consistent. A group of 5 to 10 base stations in the neighbourhood of the problem station X is selected. The data of the annual (or monthly or seasonal mean) rainfall of the station X and also the average rainfall of the group of base stations covering a long period is arranged in the reverse chronological order (i.e. the latest record as the first entry and the oldest record as the last entry in the list). The accumulated precipitation of the station X (i.e. ΣP_n) and the accumulated values of the average of the group of base stations (i.e. ΣP_n) are calculated starting from the latest record. Values of ΣP_n are plotted against ΣP_{nn} for various consecutive time periods (Fig. 2.7). A decided break in the slope of the resulting plot indicates a change in the precipitation regime of station X . The precipitation values at station X beyond the period of change of regime (point 63 in Fig. 2.7) is corrected by using the relation $P_{cx} = P_x \frac{M_e}{M_a}$ (2.6) where $P_{cx} = \text{corrected precipitation at any time period } t_1 \text{ at station } X$ $P_x = \text{original recorded precipitation at time period } t_1 \text{ at station } X$ $P_x = \text{original recorded precipitation at time period } t_1 \text{ at station } X$	[08]	CO1	L2
O 0.4 0.8 1.2 1.6 2.0 2.4 2.8 Accumulated annual rainfall of 10 station mean ΣP _{av} in units of 10 ³ cm Fig. 2.7 Double-mass Curve	8M		
M_c = corrected slope of the double-mass curve M_a = original slope of the double-mass curve In this way the older records are brought to the new regime of the station.			

		[06]	CO1	L1
5	Name various practical application of hydrology. What are the different forms of Precipitation?			
	Hydrology finds its greatest application in the design and operation of water-resources engineering projects, such as those for (i) irrigation, (ii) water supply, (iii) flood control, (iv) water power, and (v) navigation. In all these projects hydrological investigations for the proper assessment of the following factors are necessary:	4M		
	The capacity of storage structures such as reservoirs. The magnitude of flood flows to enable safe disposal of the excess flow.			
	 The magnitude of flood flows to enable safe disposal of the excess flow. The minimum flow and quantity of flow available at various seasons. The interaction of the flood wave and hydraulic structures, such as levees, reser- 			
	voirs, barrages and bridges. The hydrological study of a project should necessarily precede structural and other			
	detailed design studies. It involves the collection of relevant data and analysis of the data by applying the principles and theories of hydrology to seek solutions to practical problems.	2M		
	Forms of precipitation: Rainfall, Snow, Drizzle, Glaze, Sleet, Hail	[06]	CO1	L3
6	The average annual rainfall of 8 rain gauge stations in a basin are 1000, 950, 900, 850, 800, 700, 600 and 400 mm. If the permissible error is 6%. Determine the optimum number of rain gauges required in the basin.	[00]	COI	L3
	whion!-	2M		
	m=8 €=67.			
	$C_{v} = \frac{Cv}{\overline{p}}$ $C_{v} = \frac{100 \times \sigma_{m-1}}{\overline{p}}$			
	Avg. PcP > P = 1000 + 950 + 900 + 850 + 800 + 700 + 600 + 400			
	P = 775mm			
	$Q_{M-1} = \sqrt{\frac{M-1}{\sum (b'_1 - b)_5}} = \sqrt{\frac{8-1}{3525 + 1325 + 15$	4M		
	Om-1 = 200			
	$C_{V} = 100 \times \frac{200}{335} = 25.806 \%$			
	$N = \left(\frac{25.806}{6}\right)^2 = 18.49 \implies 19 \text{ Rain gauges}$ $= 18.49 \implies 19 \text{ Rain gauges}$			
	Additional II no of Raingauge stations are required			

P. T.O

Signature of CI Signature of CCI Signature of HOD