USN 1 C R C V

Internal Assessment Test 1 – December 2021

Sub:	Fluid Mechan	nics		100000111011		SubCode:	18CV33	Brane	ch: (CV		
Date:	17.12.2021	Duration:	90 mins	Max Marks:	50	Sem/Sec:	III	1			OI	BE
		Pr	Answo ovide neat ske	er all questic etches where		<u>necessary</u>			MARI	KS	СО	RBT
	b) Surface the liquid which is such that the control of liquid is due to the liquid is due to	ravity – It is a given reference a given reference rension – It is decreased a contact surface of the surface of the surface of the surface result of the surface without the unit is m.	s the ratio of erence materical cific gravity at is defined at with a gas face behaves large behaves large fined as the of liquid over and interaction. It is the pressuration about its Pa, Note that the property of a large tension. Carassistance of	the density al. It has not $v = \frac{Densit}{Densit}$ as the tensor on the suike a. thin in the central free surform between $t = \mu \frac{dt}{dt}$ sure of havilute pressure solute reference $t = t = t = t$. The interval is the property of the contract of the property of the contract of the c	o unity of y of y of y of sile surface for a liquid acceptantial $\frac{u}{v}$ and $\frac{u}{v}$ and $\frac{u}{v}$ and $\frac{u}{v}$ on is opposed as $\frac{u}{d}$	ts. If fluid water = $\frac{\rho}{\rho_0}$ force acting the in. between the brane under the strange of the force and the strange of the strange of the transfer of the strange of the process osition to, and the strange of	on, the free surfacen two immiscible lies tension. The unit is Note that the surfacent was a surfacent to the surfacent to th	e of quids //m. the of a erfect ence at of rise a a	[10]		CO1	L1
	centre of pres Total Pressure	sure for inc e - The tot s in contact	lined plane su al pressure is with the flui	urface. s defined as	the	force exerte	ed by a static fluid of sultant hydrostatic fo	on a	[10]]	CO2	L3

9	From figure.	
	$ains = \overline{h}$ h^+ $ah = (1)$	
	$ain = \frac{h}{y} \cdot \frac{h^{+}}{hy^{+}} \cdot \frac{h}{y} - \frac{(1)}{y}$	
	y my	
0 €	Total Fo Pressure, F	
50	a the a small gold of	
	tree surface and y from	
a	distance of h from free surface and y from	
0 -	o axu	
	Priesture on the strip, p- Pgh	
	Preserve force, dr on the abup	
	Preserve force, dr on the stup are not 1"	
	, uine	
	sub h = y ino	
	df. pg yan sino -(2).	
	A - A SOLO 7	
	of. pg yah sino [yah -> It noment of one of fydh - Ag	
	eg zino Ağ	
	· pg AT (3) [yzino · A] - 3	
1,20	X199	
	Centre of pressure, h*	
2)	Centre of	
a	Sun of moments	
	Moment of force of about 0-0 are	
	of first	
	am - afxy	
	Jub of from (2)	

		
am. pgydA eino y		
am. pg y2 sino dA.		
M. Jan = pg sino Jy2dA . [2nd moment of area of pg sino I. — (4) Jy2dA . I		
whom Io is the M.I about 0-0 axis		
(6) Moment of Resultant Force		
M2. Fxy* -(5)		
Equating (4) 8 (5)		
pg sino Io . Fx y*		
ggaine I ggAT xy*		
sub y - h - sino		
aina. L_a . $A\bar{b}$. h^*		
$\frac{1 \cdot \sin^2 \theta}{\Lambda \bar{h}} \cdot h^* \qquad 1 \cdot \bar{I}_{\bar{q}} + \Lambda \bar{h}^*$		
$A^+ - \left[I_q + \frac{Ah^2}{\sin^2 \phi} \right] \frac{\sin^2 \phi}{Ah}$		
8^{+} $\frac{1}{Ah}$ $\frac{1}{Ah}$ $\frac{1}{Ah}$		
Ah hr- h + Ig sin's		
3 One liter of crude oil weighs 9.6N. Calculate its density and specific gravity(2).		
b) Calculate the dynamic viscosity of oil which is used for lubrication between a square		
plate 0.8m x 0.8m size and inclined plane of angle 30° with a uniform velocity of 0.3m/s. The thickness of oil film is 1.5mm and the weight of block is 300N.(8).		
Volume - 1 L - 10-3 m3		
weight, w - 9-6 N		
Density, P - Mais - 9.6 - 978.59 kg/m2	[10]	CO1 L3
(Man - Wr - 2Wt)	[10]	
Sp granty - pennty of crude oil pennty of water		
- 978 59 - 0.978 1000		
	<u> </u>	

T- pldu G- 30. A - 0.8 x0.8 m ² W - 200 N UL - 0.3 m/s du - UL - 0.3 m/s du - UL - 0.3 m/s - 15 x 10 m/s - 15 x 10 m/s 0.8 x0.8 V - 300 x 20			
4 State Pascal's law and hydrostatic law. The right limb of a simple U tube manometer containing mercury is open to atmosphere while the left limb is connected to a pipe in which a fluid of specific gravity 0.9 is flowing. The centre of pipe is 12cm below the level of mercury in the right limb. Find the pressure of fluid in the pipe if the difference of mercury level in the two limbs is 20cm. Pascal's law – It is a principle in fluid mechanics that states that a pressure change at any point in a confined incompressible fluid is transmitted throughout the fluid such that the same change occurs everywhere. The pressure is same in all directions. Hydrostatic Law - It states that the rate of increase of pressure in a vertically downward direction must be equal to the specific weight of the fluid at that point.	[10]	CO2	L3

Taking deturn of $x - x$, $y = 136$ $y = $			
State Varignon's theorem. A circular opening 3m diameter in a vertical side of a tank is closed by a disc of 3m diameter which can rotate about a horizontal diameter. Calculate i) the force on the disc, ii) the torque required to maintain the disc in equilibrium in the vertical position when the head of water above the horizontal diameter is 6m. Varignon's Theorem: Moment of a force about any point is equal to the sum of the moments of the components of that force about the same point.	[10]	CO2	L4

