

Internal Assessment Test 2 Scheme of Evaluation

Sub:	HYDROLOGY AND IRRIGATION ENGIEERING	Sub Code:	17CV73	Branch	CIVIL
					OBE
			Marks	СО	RBT
1	Explain how evaporation is measured using IS class-A pan various factors affecting it Water level in pan 1210 Dia. Wood support (S	55 7 50	[10]	CO2	L2
	class A pan evaponimeter is 122cm diameter and 25. Jcm deep and is made of Unpainted Galvenized iron [Gil]. It installed 15cm above the Genound level a wooden foremes. The space blow the me-en frame permits the force circulation aion under the pan. It is filled with water to a depth of 20cm. water sweface level measured daily with a hook gauge in a stilling well. The evaporation is competed the difference blow observed levels. Annual Pan co-Efficient is generally assumed to be 0.7 (also called Land Pand Advantages:-)	de is. on ocos os is in ited	[6M]		
	Factors affecting evaporation: The rate of evaporation depends to the water surface and air above 2. Air and water temperature 3. Wind speed 4. Atmospheric Pressure	g .	[4M]		

-	of water and			
The followi	he water body ng meteorological data pertain to a large reservoir with water	[10]	CO2	L4
spread area	of 15 km ² . The data represents the average values for the day			
Air tempera	erature = 24° C			
_	c pressure = 752mm of mercury			
_	at 0.5 m above G.L = 25.3 km/h			
_	midity = 46%			
	erage daily evaporation from the reservoir and evaporation loss servoir for a period of one week using Meyer's and Rohwer's			
equations.	Take a water temp			
	Take Cs corresponding to the water temp			
	of 24° is 22.43 mm of Hy.			
	es corresponding to dist tempera			
	ture of 26° is 25.27 mm of Hy.			
	Relative humidity = Actual vapour princis sat. vapour pr @ air timp			
	Relative number g- sat. vapour pr @ air timp.	2M		
		21 V1		
	0.46 = <u>Ca</u> 25.27			
	: Ca= 11.62 mm of Hg.			
	The velocity at 0.5m abone G.L is itself			
	taken to be the mean wind speed at the			
	sayace.			
	i) Meyeria & ?->			
	Ez = KM [es-ea] [1+ 219]			
	Since it is a large water body consider			
	KM = 0.3.			
	[Note: The lower poor of the atmosphere, up to a lit of about 500m about 61, the			
	up to a lit of about 500m to follow the wind velocity can be assumed to follow the			
	expression given buy			
	Expression of the state of the			
	leh = Ch" to a skight h			
	abode the G.L.			
	c = constant.			
	the extend valocity			
	Ug = wind velocity @ a W- o.gm abone Grl			
	$u_g = 25.3 \times (9)^{1/7}$			
	ug = 34.629 km/h.			
		4M		
	: EL = 0.3 [22.43-11.62] [1+ 34.629]	1141		
	$E_{L} = 0.3 \left[22.43 - 11.62 \right] \left[1 + \frac{16}{16} \right]$ $E_{L} = 10.26 \text{ mm} \left[\frac{1}{16} \right] \left[\frac{1}{16} \right]$ $\left[\frac{1}{16} \right] \frac{1}{16} \left[\frac{1}{16} \right] \frac{1}{16} \left[\frac{1}{16} \right]$ $\left[\frac{1}{16} \right] \frac{1}{16} \left[\frac{1}{16} \right] \frac{1}{16} \left[\frac{1}{16} \right]$			
	and an almook			
	E tons for one week = 7x10.26 = (71.32 mm) week = 1.068 × 106m ³			

DOHWEN'X END'			
ii) Rott wear's eqn:->			
EL= 0.771 [1.465 - 0.000732 Pa] [0.44+0.0733			
e_{s} [e_{s} - e_{a}]			
= 0.771[1.465 -0.000732×752][0.44+0.0733×25.3]			
[22.43 - \$1.62]			
- 17.489 mmlday.			
E lox one week =7x17.489 x 10 x 15 x 10	4M		
= 1.836 ×10 m			
= 1.836 million m³.	5101	G02	T 0
During December at a particular place, the % of sunshine hours is 7.2 and mean temperature is 18°C. If the consumptive use co-efficient of crop i 0.7 for that month, find the consumptive use or ET of the crop in mm/day by Blaney-Crddle method.	3	CO2	L3
Awing Blaney - Coulddle method for ET.			
ET= 2.54 KF and F= \(\Sigma\) Ph \(\overline{1}\)			
Given: Ph 47.24.			
Ty < 18°C = GA.4°F			
K: 0.7			
ET= ? mmlday.			
ET = 2.54 x0.7 x (9.2 x 64.4)			
ET= 8.244 cm			
Jos Decomber month			
ET = (8.244 × 10 × 31) *	107.5		
Jot Decomber month ET = [8.244 × 10] × 1000 = 2.65 mmlday.	10M		
4 a. What is evapotranspiration? Write its measurements using Lysimete	[10]	CO2	L2
method, with sketch	[10]	CO2	L2
It is the total water lost from a cropped or irrigated land due to evaporation	1		
from the soil and transpiration by the plants.			
LYSIMETERS A lysimeter is a special watertight tank containing a block of soil and set in a field or			
growing plants. The plants grown in the lysimeter are the same as in the surrounding field. Evapotranspiration is estimated in terms of the amount of water required to maintain constant moisture conditions within the tank measured either volumetric ally			
or gravimetrically through an arrangement made in the lysimeter. Lysimeters should be designed to accurately reproduce the soil conditions, moisture content, type and			
size of the vegetation of the surrounding area. They should be so buried that the soil is at the same level inside and outside the container. Lysimeter studies are time-consuming and expensive.	p)		
		1	

HORTON'S EQUATION (1933) Hor pacity with time as an exponential decay g $f_{\rho} = f_{e} + (f_{0} - f_{c}) e^{-K_{h}t}$	given by	(3.22)	
where $f_p = \text{infiltration capacity at any}$ $f_0 = \text{initial infiltration capacity a}$ $f_c = \text{final steady state infiltration}$	time t from the start of the rai at $t = 0$ on capacity occurring at $t = t$ ant rate or ultimate infiltration which depends upon soil chara- of the three parameters f_0 , f_c are	nfall t_c . Also, f_c is on capacity. Someteristics and and k_h with soil	
b. Explain factors affecting infiltratio The factors affecting infiltration capa	*	5M	
 Characteristics of the soil (Texture Condition of the soil surface Vegetative cover and 	 porosity and hydraulic c Current moisture Soil temperature 	e content	

P. T.O

Signature of CI Signature of CCI Signature of HOD