USN 1 C R C V

Internal Assessment Test 2 – January 2022

Sub:	Fluid Mecha	nics		Assessment 1		Sub Code:	18CV33	Branch:	CV		
Date:	25.01.2022	Duration:	90 mins	Max Marks:	50	Sem/Sec:	III	1		Ol	BE
		Provi		r all questions ches wherever	_	essary			ARK S	C O	RI T
1	fluid motion Mountain	and list the ed on the principal man had alia ha	forces used aw of co e which = chang the for distance = d(m) = d(m)	e in mone cond lan in son e as for	of hot we we	on. remente the net in of flo a fluid of notion seting F	in the som be in meide the of	(iff)	10]	CO 4	I

			, ,	
	the net force Fx or acting on a fluid in the direction of x is equal to man the fluid elevent multiplied by the acc the x-dir. Thus mathematicals The free Fx or acting on a fluid to man the x-dir. Thus mathematicals The the fluid flow, the following forms are			
	(i) Fg, granty force. (ii) Fp, the frame force. (iii) Fv, force due to viscosity. (iv) Fi, force due to turbulence. (iv) Fi, force due to confussibility.			
	Thus, in egn, the net force $F_{\chi} \cdot (F_g)_{\chi} + (F_{\ell})_{\chi} + (F_{\ell})_$			
2	State and prove Bernoulli's equation for motion of fluid along a stream line. List the assumptions for the equation. Bernoulli's equation states that in a steady. Bernoulli's equation states that in a steady. Incompressible flow the sum of pressure head (fg), is a contact velocity head (\frac{\sqrt{2}}{2g}) and datum head (\frac{\sqrt{2}}{2}) is a contact	[10]	CO 4	L3

3) Weight of the fluid element along s-direction	
3) Weight of the factor	
m = mais - p × volume . p × dA × de - (3) coso · day F3 · pandig day +4)	
Using equation of motion along s-dividuos	
EF ₈ - ma _s	
$F_1 - F_2 - F_3 = ma_s$. — (5) where a_s - acc due to gravity along s-director of $a_s \cdot \frac{dV}{dt}$. But V is a function of S and t	
$a_s - \frac{\partial v}{\partial t} + \frac{\partial v}{\partial t} = \frac{\partial v}{\partial s} \cdot \frac{\partial c}{\partial t} + \frac{\partial v}{\partial t} = 0$	
A securing steady flow $\frac{\partial V}{\partial t} = 0$, $\frac{\partial V}{\partial s} = \frac{\partial V}{\partial s}$ (dependent $\frac{\partial S}{\partial t} = V$ distance:	
$a_{s} = \frac{dv}{ds} \cdot v - (6)$	
Substituting (1), (2), (3), (4) and (6) in (5); we have	
* E	

	pdA - (p+dp.ds)dA - pdAdsgdar - pdAdsdv.v			
	par - par - ap deda - pards de parde de v			
	Taking all turns one one side,			
	de de dA + pdAdig do + pdAde dv V = 0			
	dividing by de thoughout, we have.			
	dpdsdA + pdAdsgdz + pdAdsdvV = 0			
	dividing by mg - paladeg throughout, we have			
	$\frac{dp}{gg} + \frac{dy}{g} + \frac{vdv}{g} = 0$ Note $\frac{v^2}{2g}$ relocity has $\frac{v^2}{2g}$ kinetic heat			
	This is Euler's Equation 3 - potential head.			
	Integrating the trum, we have			
	Sap + Sag + Svav -0 Weight			
	P + 2 + \frac{v^2}{29} to constant - Bernoulle's equalif			
	A servetoris of Bernoulle's egn)			
	The liquid is ideal & incompanible the flow is steady & contisuous The flow is along a steamlineder it is one— dimensional the well is whitever over a sect & is equal to the			
	1) the pear is steady & contisuous			
	The flow is along a eternative et is one-			
	dimensional area a put & is equal to the			
	The only forces acting on the blued one garity forces & human forces.			
	grantly forces & kuessure forces.			
3	a) What is static and stagnation pressure in a pitot tube.			
	At a stagnation point the fluid velocity is zero. In an incompressible flow, stagnation pressure is equal to the sum of the free-stream static pressure and the free-stream			
	dynamic pressure. Stagnation pressure is sometimes referred to as pitot pressure because it is measured using a pitot tube.	[10]	CO 4	L3
	b) Water flowing through a pipe having diameter 30cm and 15cm at the bottom and upper end respectively. The intensity of pressure at the bottom is 29.43N/cm ² and the			

pressure at the upper end is 14.715N/cm ² . Determine the difference datum head if the
rate of flow through the pipe is 50l/s.

4	a) Write the equation of force along x and y direction for a pipe bend and explain the		
	terms in the equation.		
	$F_{x} = p_{1}A_{1} - p_{2}A_{2}\cos\theta - \rho *Q*(v_{2}\cos\theta - v_{1})$		

CO₄ L₃

[10]

$$F_x = p_1 A_1 - p_2 A_2 \cos \theta - \rho * Q * (v_2 \cos \theta - v_1)$$

$$F_{y} = -p_{2}A_{2}\sin\theta - \rho *Qv_{2}\sin\theta$$

$$F_r = \sqrt{{F_x}^2 + {F_y}^2}$$

$$\tan \phi = \frac{F_y}{F_x}$$
 wrt to x axis

b) 2501/s of water is flowing in a pipe having diameter 300mm. If the pipe is bent by 135°, find the magnitude and direction of the resultant force on the bend, when the pressure of water flowing is 39.24N/cm².

46) Q-2501/2 -025 m//2			
di-dz - d - 200000 - 0 30 , A1-A3-A - Tx02 - 0 070702			
Po-P2-P - 37-24 N/cm2- 37-24-10-76/m2			
6-136, 4-12- V- 4 -0.25 - 3.5344)s			
Fx = 18(41-42000) + P1A1-P2A20000			
Fy para are - para ins			
Fx . 1000× 0 25 × (2.636 - 3.536× cool35) + 31.24×11× 0.0251			
- 33.24×10 1/2 0 0707×100135"			
Fr. 48868-79 N			
Fy 1800 40-26 x 3536 x 36135 - 34-24 × 107 x 0 0707			
> - 20242- 11155 N			
Fe V Fet Fy			
F. 52195148N F.			
tora - Fy - a - ton-1 200 242 11105 - 225"			
48 668 19			
The 20cm x 10cm venturimeter is provided in a vertical pipe line carrying oil of specific			
gravity 0.8, the flow being upwards. The difference in elevation of the throat section and entrance section of the venturimeter is 50cm. The differential U tube mercury			
manometer shows a gauge deflection of 40cm. Calculate i) the discharge of oil, ii) the	e [10]	CO4	I
pressure difference between the entrance and throat section. Take Cd = 0.98.(Use the	3		

45				
En) 9	1-2014-0-24 1-2+2-0-03144			
4.	- 1004 - 014) - Expl - 7:847 x15-3			
	, In there o Ge			
1700	40ta) = 0 Har	1		
(M +2,)	- (px+24) - 4 - x (52-	5		
100	124 Sex -0 8			
h- 2	(Sg) . 04x(136 - 00)			
K- (3)	-+21) - (11 +21) => (P - P)+0-05-50		
Difference of	4 hann (4-4) = (144+05) × 6 8 mm× 431		
1	- 5415	1-2 11/3		
4. 20	(hi hi)	0.269143/2		