USN	1							
Sub:	Design of RC	and steel struc	tural element	S		Sub Code:	18CV72/17CV72	Branch:
Date:		Duration:	90 min's	Max Marks	: 50	Sem / Sec:		ALL

Answer any one Questions- Use of IS 456 -2000/IS 800 is permitted

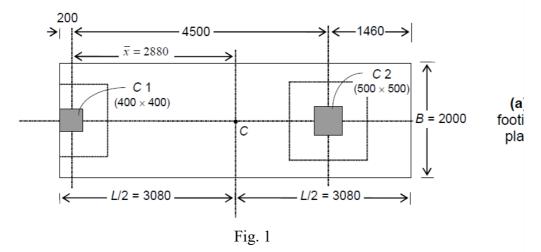
MARKS [50]

1 (a) Design a combined rectangular slab type footing for two columns A and B to carry loads of 600 kN and 900 kN. The cross section of column A is 300 x 300 mm and 400x 400 mm. The width of the footing is restricted to 1.8 m. The centre to centre spacing between the columns is 3.6 m. The safe bearing capacity of the soil is 175 kN/m². Use M20 concrete and Fe 415 steel. The design must include all necessary checks and draw the reinforcement details

SOLUTION

Footing base dimensions

Assuming the self-weight of the combined footing plus backfill to constitute 10 or 15 percent of the total column loads,


$$\Delta P = (900 + 1600) \times 15/100 = 375 \text{ kN}$$

$$P_1 + P_2 = 900 + 1600 = 2500 \text{ kN}$$

$$q_a = 240 \ kN/m^2$$

$$A_{reqd} = \frac{P_1 + P_2 + \Delta P}{q_a} = \frac{11.98 \text{ m}^2}{11.98 \text{ m}^2}$$

In order to obtain a uniform soil pressure distribution, the line of action of the resultant column load must pass through the centroid of the footing. Let the footing centroid be located at a distance x' from the centre of C1. (Fig.1)

Assuming a load factor of 1.5, the factored column loads are:

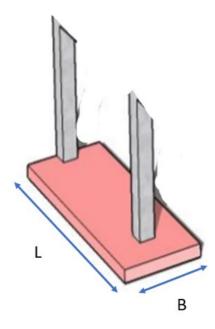
$$P_{u1} = 900 \times 1.5 = 1350 \text{ kN}; \ P_{u2} = 1600 \times 1.5 = 2400 \text{ kN} \Rightarrow P_{u1} + P_{u2} = 3750 \text{ kN}$$
 spacing between columns s = 4500 mm

Let x' be measured from centre of C1 (x' is centroid of column loads)

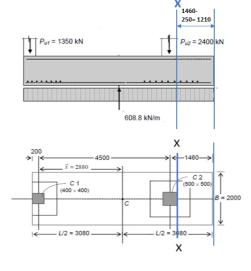
$$\Rightarrow \overline{x} = \frac{P_{u2} s}{P_{u1+} + P_{u2}} = \frac{2400 \times 4500}{3750} = 2880 \text{ mm}$$

The total length L of the footing should be such that, centroid of footing,

$$L/2 = (2880 + 200), L = 2 (2880 + 200) = 6160 \text{ mm} = 6.16 \text{ m}$$

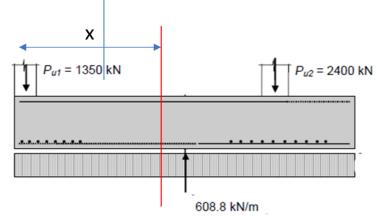

Provide L = 6.16 m

 \Rightarrow width of footing required B = A/L = 11.98/6.16 = 1.95 m rounded to 2.00 m


Provide B = 2.00 m

• Uniformly distributed load acting in upward direction (soil pressure)

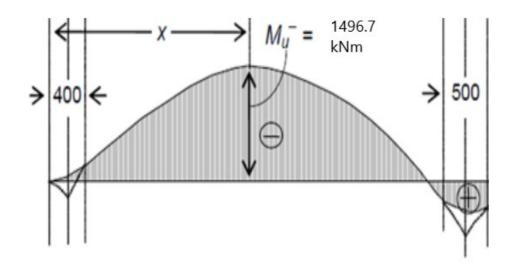
Treating the footing as a wide beam (B = 2000 mm) in the longitudinal direction, the uniformly distributed load (acting upward) is given by q_{uB}

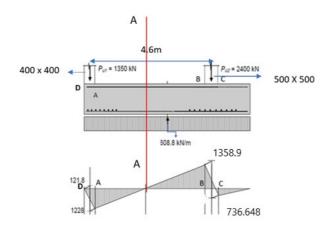

 $q_{uB} = (P_{u1} + P_{u2})/L = 3750/6.16 = 608.8 \text{ kN/m} \text{ (Upward soil pressure intensity)}$ The maximum 'positive' bending moment (**heavier column**) at the face of column C2 at XX is given by

Moment at section XX, just right of XX, $Mu + = 608.8 \times (1.460 - 0.250)^2/2 = +$

<mark>446 kNm</mark>

The maximum 'negative' moment occurs at the <u>location of zero shear</u>, which is at a distance X from the centre of column C1




To find 'x', Shear force at 'x' = $608.8 \times (X) - 1350 = 0$ (Location of zero shear)

$$X = 1350/608.8 = 2.2175 \text{ m}$$

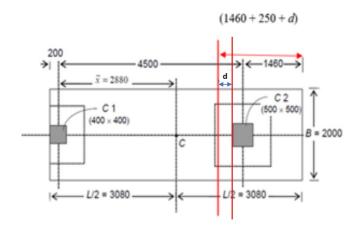
 \Rightarrow Negative bending moment Mu - at X = 2.2175 m,

$$Mu = 608.8 \times (2.2175)^2/2 - 1350 \times (2.2175) = (-)1496.79 \text{ kNm}$$

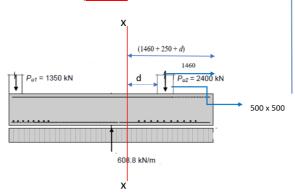
• Shear force calculations (optional right now)

Shear force at D, (outer edge of column C1) just left of section AA= 608.8 x 0.2 = +121.8 kN

Shear force at A , (inner edge of column C 1) just left of section AA = -1350 + $608.8 \times 0.2 = 1228 \text{kN}$


Shear force at C, (outer edge of column C 2) just right of section AA = $-608.8 \times (1.46 - 0.25) = 736.648 \text{kN}$

Shear force at B, (inner edge of column C 2) just right of section AA = -608.8 x (1.46 + 0.25) + 2400


1358.95kN

• Thickness of footing based on shear

One-way shear (longitudinal): Vul calculate it at a distance "d" from the edge of the heavier column, where "d" is the effective depth of the footing

The critical section (always for column with greater load) for one-way shear is located at a distance d from the (inner) face of C2, and has a value

Critical One way shear, Vu1 at section XX (just right of XX section) = Column load (C2) - Uniformly distributed upward load × (1460 + 250 + d)

=
$$(2400 - 608.8 \text{ x} (1.460 + 0.250 + d)) = 2400 - 888.848$$

- 152.2 – 608.8 x d

$$= (1359 - 608.8 \times d) \text{ kN} \dots (1)$$

Assuming $\tau_c = 0.48 \text{ N/mm}^2$ (for M 20 concrete, Assuming Percentage of steel as pt = 0.50) IS 456 2000, page 73, table 19

Design shear strength of concrete, $V_{uc} = \tau_c \times B \times d = 0.48 \times B \times d$

Equate V_{uc} and V_{u1}

B is width of footing = 2000 mm

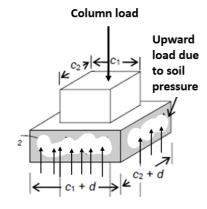
$$V_{uc} = 0.48 \times 2000 \times d = (960d) N....(2)$$

Equating one-way shear force and design shear strength of concrete, (1) = (2)

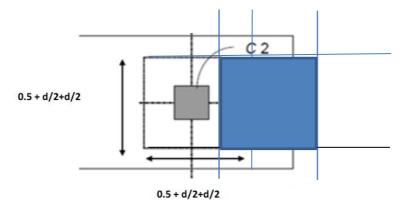
$$V_{u1} = V_{uc} \Rightarrow (1359 - 608.8d) \times 10^3 = 960d$$

 \Rightarrow Effective depth of footing, d = 866 mm

Use 20 mm ϕ bars with a clear cover of 75 mm, Taking an overall depth or thickness of the footing

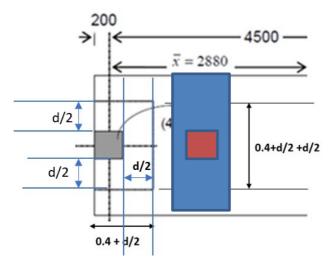

$$D = d + 75 + 20/2 = 866 + 75 + 20/2 = 951 \text{ mm} = 950 \text{ mm}$$

Two-way shear or punching shear (we need to consider the upward soil pressure not upward soil intensity) * Since it is acting on an area.


Factored soil pressure or Upward soil pressure, $q_u = (608.8) / (B \times 1) = (608.8/2) = 304.4 \text{ kN/m}^2$

The critical section is located d/2 from the periphery of columns C1 and C2.

Two-way shear force for columns C1 and C2 (Punching shear)


Shear stresses in footing slab due to punching shear

Punching shear or Two- way shear calculations for heavier column C2

$$V_{u2} = 2400 - 304.4 (0.5 + 0.866/2 + 0.866/2)(0.5 + 0.866/2 + 0.866/2)$$

= 1832 kN @ C2 (Heavier column)

Punching shear or Two way shear for C1

Punching shear or Two-way shear @ C1,

Two way shear V_{u2} = (Column load at C1) 1350 - 304.4 x (0.4 +0.866/2 + 0.866/2)

$$x(0.4+0.866/2)$$

$$= 1029 \text{ kN } @, C1$$

If no shear reinforcement is provided,

Page 58, IS 456, Clause 31.6.3.1, when no shear reinforcement is provided, calculated

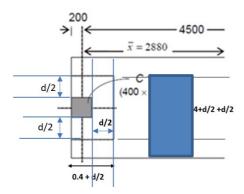
shear stress at critical section shall not exceed

$$k_s \left(0.25 \sqrt{f_{ck}}\right)$$

where

 $k_{\rm a} = (0.5 + \beta_{\rm c})$ but not greater than 1, $\beta_{\rm c}$ being the ratio of short side to long side of the column/capital; and

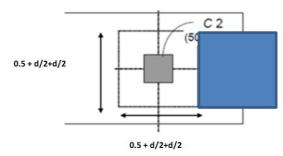
 $\tau_{\rm c} = 0.25 \ \sqrt{f_{\rm ck}}$ in limit state method of design, and 0.16 $\sqrt{f_{\rm ck}}$ in working stress method of design.


For square columns, ks = 500/500 = 400/400 = 1.0

Permissible shear stress, $\tau_{c2} = 1.0 \times 0.25 \times \sqrt{20} = \frac{1.118}{\text{N/mm}^2}$

Permissible two-way shear force for columns C1 and C2

Permissible two way shear force, V_{uc} = Permissible shear stress × (Area of the footing slab enclosed by the perimeter of the critical section)


Perimeter of critical section = (400+866/2 +866/2) + 2 X (400+866/2), depth = 866 mm

$$V_{uc} = 1.118 \text{ x } [(400 + 866/2 + 866/2) + (400 + 866/2) \times 2] \times 866 = \frac{2839}{\text{kN}} \text{ }$$
C1

In the similar way lets calculate for C2

Permissible two way shear force , $V_{uc}=1.118\times (500+866/2+866/2)\times 4\times 866$ = 5290 kN @ C2

Compare whether permissible two way shear force is greater than two shear way (Actual)

$$V_{uc} = 2839 \text{ kN} > V_{u2} = 1029 \text{ kN}$$
 @ C1

$$V_{uc} = 5290 \text{ kN} > V_{u2} = 1832 \text{ kN}$$
 @ C2

Hence safe against two way or punching shear, (if not provide shear reinforcement-stirrups or bent up bars)

• Design of longitudinal flexural reinforcement

Maximum 'negative' moment: $Mu = 1496.7 \text{ kNm}$	Maximum 'positive' moment:
at the location of zero shear	of column C2
$M_{\rm u} = 0.87 \ f_{\rm y} \ A_{\rm st} \ d \left(1 - \frac{A_{\rm st} \ f_{\rm y}}{bd \ f_{\rm ck}} \right)$	$M_{\rm u} = 0.87 f_{\rm y} A_{\rm st} d \left(1 - \frac{A_{\rm st} f_{\rm y}}{bd f_{\rm ck}} \right)$
$Mu = 1496.79 \times 10^6 \text{ N mm}$	$Mu = 446 \times 10^6 \text{ N mm}$
$B = b = 2000 \text{ mm}, \text{ fck} = 20 \text{ N/mm}^2,$	B = b = 2000 mm
$fy = 415 N/mm^2$	d = 866 or 865 mm
d = 866 mm /865 mm	
Ast provided = 5098.24 mm ² (check the	$Ast = 1451.7 \text{ mm}^2$
value!!)	

Check for (Ast)min = 0.0012 BD =

 $0.0012 \times 2000 \times 950 = 2280 \text{ mm}^2$

Ast provided > (Ast)min

But we have assumed pt = 0.5

 $pt = 100 \text{ Ast, req/ (B} \times d)$

No, of bars = Ast req/ Area of one bar

Assume 20 mm dia bars

$$\Rightarrow (A_{st})_{read} = 0.50 \times 2000 \times 865/100 = 8650 \text{ mm}^2$$

$$> (A_{st})_{min} = 0.0012BD$$

Number of 20 mm ϕ bars required = 8650/314 = 28

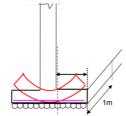
[Corresponding spacing = $(2000 - 75 \times 2 - 20)/27 = 68$ mm, which is low but acceptable.]

- :. Provide 28 nos 20 mm \(\phi \) bars at top between the two columns as indicated in
- Required development length (with M 20 concrete and Fe 415 bars) will be less than $L_d = 47.0 \times 20 = 940 \text{ mm}$ Adequate length is available on both sides of the peak moment section.

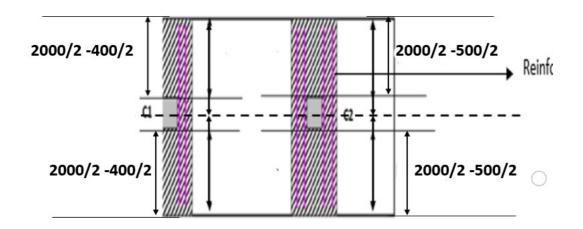
Check for Min Ast

 $(Ast)min = 0.0012 \ BD = 0.001$

 mm^2


 $1451.7 < 2280 \text{mm}^2$

Since moment is less, smaller c


- Number of 16 mm φ bars required = 2280/201 = 12
 [Corresponding spacing = (2000 75 × 2 16)/11 = 167 mm OK.]
 - ∴ Provide 12nos 16 mm ¢ bars at bottom
- Required development length = 47.0 × 16 = 752 mm, which is available on the side of the column C₂ close to the edge of the footing; by placing the bars symmetrically with respect to column C₂, the required length will be available on both sides of the section of maximum 'positive' moment.

d

Design of column strips as transverse beams

Tranverse bending of footing

Transverse beam under column C1	Transverse beam under column C2
• Factored Column load per width of footing = 1350/2.0 = 675 kN/m	Factored Column load per width of footing kN/m
• Projection of beam beyond column face = $(2000 - 400)/2 = 800$ mm = 0.8 m	 Projection beyond column face = (2000 – 5 = 0.75m Moment at column face =
Maximum moment at column face:	1200 × 0.75²/2 = 338 kNm ■ Width of transverse beam = width of colum
$Mu = 675 \times 0.80^{2}/2 =$ 216 kNm	• $500 + 0.75 \times 851 + 0.75 \times 851 = 1777 \text{ mm}$
• Effective depth for transverse beam (16	$M_{\rm u} = 0.87 \ f_{\rm y} \ A_{\rm st} \ d \left(1 - \frac{A_{\rm st} \ f_{\rm y}}{bd \ f_{\rm ch}} \right)$

 $Mu = 338 \times 10^6 \, \text{N mm}$

b = 1777 mm

mm ϕ bars placed above the 16 mm ϕ

longitudinal bars):

$$d = 950 - 75 - 16 -$$

16/2 = 851 mm

• Assume width of transverse beam, b = width of column + 0.75d

$$b = 400 + 0.75 \times 851 =$$
1038 mm

$$M_{\rm u} = 0.87 \ f_{\rm y} \ A_{\rm st} \ d \bigg(1$$

b = 1038 mm, d = 851 mm $Mu = 216 \times 10^6 \text{ N mm}$ $Ast = 709 \text{ mm}^2$

d = 851 mm

 $Ast = 1113.6 \text{mm}^2$

Page 48, CL No 5.2.1

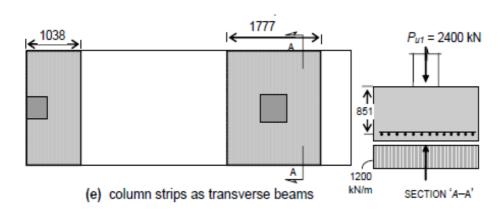
- Minimum Ast = $0.0012 \ bD =$ $Ast = .0012 \times \frac{1038}{1038} \times \frac{1038}{1000} \times \frac{1038}{1000}$
- Use 16 mm or 12mm dia bars (Your wish!!)
- Number of 16 mm φ
 bars required =
 Ast/ area of one bar =
 1183/201 = 6

Check for development length = $47 \times 16 =$

Alternatively, no. of
 12 mm φ bars required
 = 1183/113 = 11

• Provide (*Ast*) $min = 0.0012 \times 1777 \times 950 =$

Use 16mm or 12 mm dia bars


Number of 12 mm φ bars required = 2026/113 = 15

Provide 18 nos 12 mmφ bars

 Required development length = 47.0 × 12 = beyond the column face.

Provide 11 nos 12 mm ϕ bars

• Required development length = 47 × dia of the bar = 47.0 × 12 = 564 mm

Transfer of force at column base Column C1

• Limiting bearing stress at IS 456 Page 65, CL34.4

34.4 Transfer of Load at the Base of Column

The compressive stress in concrete at the base of a column or pedestal shall be considered as being transferred by bearing to the top of the supporting pedestal or footing. The bearing pressure on the loaded area shall not exceed the permissible bearing stress in direct compression multiplied by a value equal to

$$\sqrt{\frac{A_1}{A_2}}$$
 but not greater than 2;

where

A₁ = supporting area for bearing of footing, which in sloped or stepped footing may be taken as the area of the lower base of the largest frustum of a pyramid or cone contained wholly within the footing and having for its upper base, the area actually loaded and having side slope of one vertical to two horizontal; and

A, = loaded area at the column base.

For working stress method of design the permissible bearing stress on full area of concrete shall be taken as $0.25 f_{ct}$; for limit state method of design the permissible bearing stress shall be $0.45 f_{ct}$.

i) column face =
$$0.45fck = 0.45 \times 20 = 9.0 \text{ MPa}$$

Transfer of force at colun

• Limiting bearing str i) column face = 0.45 fck =

Permissible bearing stress =

$$[A1 = 2000^2, A2 = 500^2 \text{ m}]$$

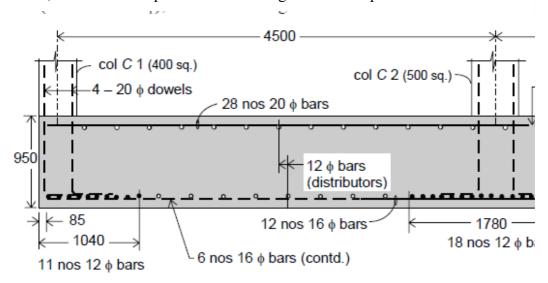
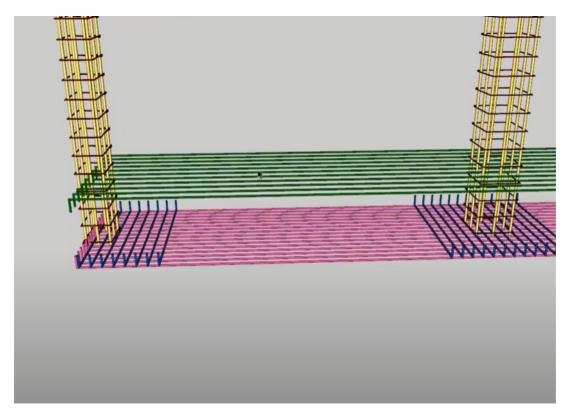
$$= 0.45 \times 20 \times 2.0 = 18.0 \text{ M}$$

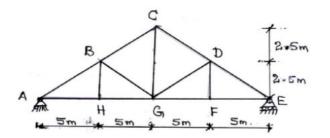
Permissible bearing resista 3375 kN

3375kN > 2400kN, Hence

Permissible bearing stress = $0.45 fck \sqrt{\frac{A1}{A2}}$	
[As the column is located at the edge of the	
footing , Assume $A1 = A2 = 400^2 \text{ mm}^2$]	
$= 0.45 \times 20 \times 1.0 = 9.0 \text{ MPa}$	
$=9.0 \text{ N/mm}^2$	
Permissible bearing resistance or force	
Fbr = Permissible bearing stress × column area	
$= 9.0 \times 400^2 = 1440 \times 10^3 \text{ N} = 1440 \text{kN}$	
1440> 1350 kN, hence OK.	
Hence, full force transfer can be achieved without	In this case also, full force
the need for reinforcement across the interface.	achieved without the need
However, it is desirable to provide some nominal	across the interface. However
dowels (4 nos 20 mm φ),	provide some nominal dow

The reinforcement details are indicated in Figure 1. Some of the longitudinal bars at the bottom are shown (arbitrarily) extended across the full length of the footing in order to provide some nominal reinforcement in the large (otherwise unreinforced) area of concrete between the columns and also to tie up with the transverse bars under column C1. Nominal transverse reinforcement is also indicated at top between the columns, in order to tie up with the main longitudinal bars provided.


Figure 1

3D view of Reinforcement details

OR

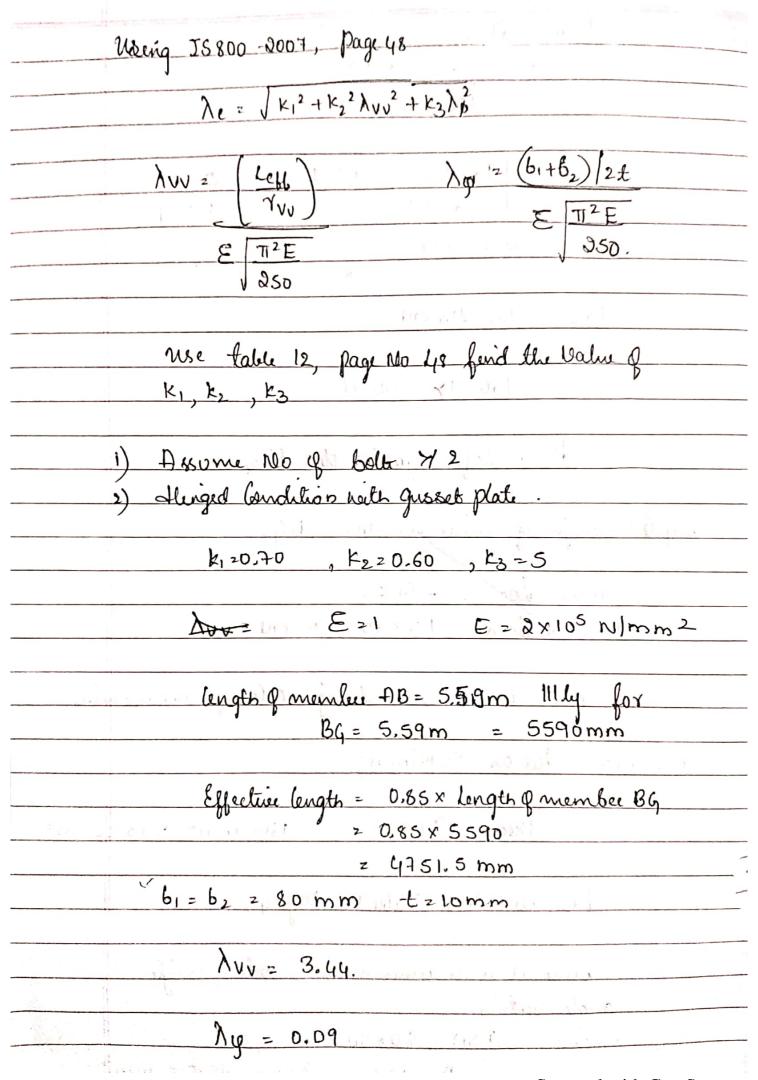
2 (a) The centre line of the roof truss is shown. The magnitude of forces under service conditions are Top chord member = 120 kN Compression, Bottom Chord member = 100 kN Tension, Interior members = 60 kN compression. Use M16 bolts of grade 4.6. Design all the members.

1.4	: Desegn of Top chard member (AB)
oup	130 KNI (Compression)
	Top chard member (max Load) = - 120 KN (Compressión)
200	-factored Load = 1.5 x 120 = 180 kM.
	To find out Kength
	$\frac{3.5m}{adj} = \frac{opp = 3.5}{s}$
	adj 3.5m
	$\theta = \tan\left(\frac{3.5}{5}\right) = 96.56$
	ALTON KO
	$-AB^{2} = AH^{2} + BH^{2}$
	$= 5^2 + 9.5^2$ $AB = 5.59 \text{ m}. = 5.590 \text{ mm}$
	48 = 5.5,
	Assum design lampressive steers as 110 N/mm²
	(Range 40 - 120 N/mm²)
	Compressive Steens 2 factored Load
	GLONS axea
1	Gross area -Ag = factored load
	Compressive stres
)	$= 180 \times 10^3 =$
	2911 (22.4.1)
	= 1636 mm ²
	= 16.36 (m²
	Steel label fig No 6, page 18

Let us use double angle boetion
JISA. 80 × 80 × 10 mm
Asea = 30.10 Cm² 8xx = 2.41cm 8yy = 3.73 cm
Vnui = 2.41cm = 24.1 mm
Effective Lengle Calentation
Effective dength for top chard member (AB)
Leff = 0.8 x L
= 0.8 x 5590
= 4472mm
Slenderners ratio (1) = Left = 4472 = 185.56
Smin 24.1
e se la companya de la companya del companya de la companya del companya de la co
Jas 1 = 185,56 find fcd from Table 9c pg 42 IS800-2007
180 43.6
190 39.7
-Fed = 41.43 N/mm² (through interpolation)
rear 2 miles (many zeas)
O : 1 Co : 1 Co : 2 Cot v Oa
Design of Compressive Stringte = Icd x Ag = 41.43 x 3010
= 124.70 KN
134.40 < 180
. The Selected Section is not day levice the
Certion wills more area
Scanned with CamScann

Sleps: Counsection closegive 1250 Mis, 46 Clause bolt (16 is the dia of bolt, grade 4.6 areans 400 NI mo is the strength of bolt other 0.6 is the satio of allemate strength of bolt advaided by closegin observables bolt 1. Show strength of bolt from Is 800-200+ page 4.5 Vasb = Vasb Vasb = 40b (nn Anb + ns Asb) 13 Anb = 125 Anb = 125 Anb = 156.82 Mm² Nab = 400 (2×156.82) Vasb = 58 KN - (0)	. Ic clave bolt
	16 is the dia of both, grand the sation of
	is the strength of bolt then the diagn strongth of
	16 is the dia of bolt, grade 4.6 meons 400 N/mm² [16 is the dia of bolt other D.6 is the Kalio of is the strength of bolt otherwiseld by design solvength of bolt bolt Shear strugge Of bolt From Is 800-2007 page 7.5 Vasb = Vnsb Vnsb = 400 (NnAnb + ns Asb) The = 1.25 Anb = 1.25 Anb = 1.56.82 Mm² Vnsb = 400 (2×156.82) J3
	boll
	an al an hold
١	Shear Strengt Of Will
	C 72.62 00.7 0000 7.5
	thou 18 800 - 2007 page -+13
	1111 - March (12)
	170(6
	AL . Col (M. Dab + Ma Asl)
	7mb = 1.25
	6. (00 11) 12
	Mn 2 2
	Anb= 0.78 xtl/qxd2
	Anb = 156.82 Mm2
	BOOK TOUR STORM AND
	no Shork metin Asb = 0
	Nacomis
2.2	Voch - Lon (2x15682)

	as well as
on the same of the later of the	Udpb= 2.5 Kb dt bo
	1 MO
	D. V. P D. 25 BUL 1-0
	3do 3do 80
	e=1.7 x dià & bolt hole
	bolt hole = dia of bolt + 2 mm
	2 (6+2
	2 18 mm
	e= 1.7x18 = 30.6 \$40
	c ¹ /2-V =
	P = J.5x dia of bolt
	·= 2.5 × 16
	P=40 \$50
	KB= 0.67
	in a contract of the contract
	Vdp6 = 87.9 kN -2)
	Bolt Value z Smaller of 1002
	2 58 KM
	The state of the s
	No q boll = disign doad = 180 = 3 No
	Bolt Galue S6
9	dence provide 2 ISA 80mm With 3 bolts


	Max Load = 100 km
Slept)	factored Load = 1.5 × 100 = 150 kM.
	length = 5 m = 5000m
	From Is 800-2006 Page 32
	Tensile bleengts due la yielding of Gran beetion
	Tag = Ag fy
	Tmo = 1.1
	fy = 250 N/mm ²
	Tolg = 150 x103 W
	Ag = Tdg x7mo = 150 x 103 x 1.1
	By 350
	the set of the set of
	Ag 2 660 mm ²
	Seine it is a leotlon Section of the area by 30%
	-Ac - 660 1 660 0 3
	$-Aq = 660 + 660 \times 0.3$ $Aq = 858 \text{ mm}^2$
	39 2 0 30 mm
	Seon steel por talele, page 18 Talele 6
	for 2 ISA 80x80 x 6
1	-Ag = 18.58 cm²

Connections: Use M16, 4.6 Shear Strength of bott IS 800 - 2007, pg 75 Vnsb = fub (nn Inb + Ms Asb) V3 Vdsb = Vnsb Ymb Anb = 0.75 × m / 4 d 2 d = 16mm Anb = 156.82 mm² Mn = 2 fub = (400 N mm² Vnsb = 58 kN - Ø Bearing strength of bote Vdpb = 2.5 kb dt bu 7mo kb = 0.67 fu = (410 N mm² d = 16 Vdpb = 53 kN - Ø Smalle value = 53 cN No g bolt = 150 = 2.83 53 ≈ 3 No	
Shear Stringth of both IS \$00 - 2007, pg 75 Vnsb = Lub (Mn Anb + Ms Asb) Vab = Vnsb Ymb Anb = 0.78 × Th 4 2 d > 16mm Anb = 156.82 mm² Mn > 2 Lub - 400 N mm² Vnsb = 58 kN - D Bearing Stringth of both Vdpb = 8.5 kb dt bu Tmo Kb - 0.67 fp = 410 N mm² d > 16 7mo = 1.26 t = 6 Vdpb = 53 kN - D Smaller Value = 53 kN No g bolb = 150 = 3.83	
	TATO CONTRACTOR OF THE PARTY OF
	+1nb= 156.82 m m2
	Nn 2 2
	Fub = 400 N/mm2
	Vnsb = 58 kn - 0
	Bearing Strength of bole.
	UT 2
	Vapo = 2.5 Kb dt fu
	Ymo
	Kb = 0.67 fv = 610 N/mm 2
Shear shringth of both IS \$00 - 2007, pg 75 Vnsb = fub (nn 1)nb + Ms Asb) Vasb = Vnsb Ymb -Anb = 0.78 x TV (u d 2 d > 16m Anb = 156.82 m m² Mn = 2 Fub = 400 N m 2 Vnsb = 58 kN - 0 Bearing shringth of both Vapb = 2.5 kb dt fu 7mo Kb = 0.67 fu = 410 N m 2 d = 16 7mo = 1.25 £ = 6 Vapb = 53 kN - 0 Smaller value = 53 kN No 9 bolk = 150 = 2.83	d216 7m0=1.26
	£ = 6
	Edit 10 Distriction 1.
	Vapb = 53kn -2
	Smaller Value = 53 KN
	, b
	No 9 balle = 150 = 2.83

Step 4: Check for suptime
IS 800-2007, 19. 33
Tdn = 0.9 Anc fu + BAgo fy
ym1 /m0 β = 1.4 -0.076 (W/£) (by/fo) (bs/cc) ≤ (fu η mo) ≥ 0.7 βy η ms)
W = 80 mm
t = 6mm fy = 2 50, fy = 410 N/mm = 55, 55,
Lcc = 55 + 55 = 110 mm
bs 2 W + We - t
= 119mm $bt = 9 = 45$
B= 0.73 Johno 2144
0.43 스 1.44 > 0-ㅋ
Hence take B = 0.73.
$-ig_0 = (b - il_2) \times t$
$= (80 - 6/2) \times 6$
= 462mm2
Anger de la

7 (80 - 6/2) 6 - 18 × 6 2 354mm ² For donly angle Ton - 2 × 6 0.9 Anc by +8 Ago by Ton = 362.301 KN Ton = 362.301 KN Alence the reptice is Safe Step6. There for black shear shear page 33, Is soo, cl 6.4 Toto = Avg by + 0.9 Atn by Toto = (0.9 Avn by + Atg by \[\sum \sqrt{3}\sqrt{m} \] Or Toto = (0.9 Avn by + Atg by \[\sum \sqrt{3}\sqrt{m} \] \[\text{Nm} \] Avg = Lv × t = 155 × 6 = 930 mm ²		Anc = (6- t/2) t doxt	
For donly angle Ton > 2 x (0.9 Anc ho + & Ago by 7m) 7mi Ton = 362.301 × 150 km Alence the hapter is Safe Steps: Their for Black Shear Shear page 33, Is soo, cl 6.4 Toto = (Aug by + 0.9 Aln bo) (337mo 7mi) or Toto = (0.9 Aun bo + Atg by (33 Vmi) 7mi) Lv = 45 + 55 + 55 Aug = Lv × t = 155 × 6 = 930 mm² Atg = Lt × t = 35 × 6 = 210 mm²			
Tdn = 362.301 KN 362.301 > 150 KN Alence the hupture is Safe Stops: Theck for Black shear Shear page 33, Is 800, CL 6.4 Td6 = Aug by + 0.9 Atn bu Trans or Td6 = (0.9 Aun by + Atg by \[\sum_{3} \sqrt{m} \] \[\sqrt{13} \sqrt{m} \] \[\sqrt{13} \sqrt{m} \] \[\sqrt{13} \sqrt{m} \] \[\sqrt{155} \times 6 = 930 mm^2 \] Atg = Lv x t = 35 x 6 \[\times 210 mm^2 \]		2 354mm ²	
-: 362.30) > 150 kn1 Alence the suptree is Safe Stops: Theck for Black Shear Shear Page 33, Is 800, CL 6.4 Td6 = Aug by + 0.9 Aln bu \[\tau_3 \tau_0 \] \tau_1 \] Or Td6 = \(0.9 \text{ Aun bu} \) + Atg by \[\tau_3 \tau_1 \] \tau_2 \] Lv = 45+55+55 Aug = Lv x t 2 155 x 6 = 930 mm ²	•	-Fordonle angle Tdn = 2 x (0.9 Anc hv + 8 Ago by	(w)
Alence the supture is Safe Stops: Check for Black shear shear page 33, Is soo, CL 6.4 Tab = Aug by + 0.9 At n bu \[\tag{\frac{7}{3}}\frac{7}{m_0}\] or Tab = \begin{pmatrix} Aug by + 0.9 At n bu \tag{\frac{7}{3}}\tag{m_0}\] or \[\tag{2}\tag{155}\tag{5}\tag{5}\tag{155}		Tdn = 362:301 KN	
Alence the supture is Safe Stops: Check for Black shear shear page 33, Is soo, CL 6.4 Tab = Aug by + 0.9 At n bu \[\tag{\frac{7}{3}}\frac{7}{m_0}\] or Tab = \begin{pmatrix} Aug by + 0.9 At n bu \tag{\frac{7}{3}}\tag{m_0}\] or \[\tag{2}\tag{155}\tag{5}\tag{5}\tag{155}		362.30) > 150 KM	
Slops: Theck for Black Shear Shear page 33, IS 800, CL 6.4 Td6 = Aug fy + 0.9 Atn fu \[\tag{737m0} \text{7m1} \] or Td6 = (0.9 Aun fu + Atg fy \[\tag{37m0} \text{7m0} \] Lv = (45 + 55 + 55) Aug = Lv x t = 155. 2 155 x 6 = 930 mm ²		House the supture is Sal	
Page 33, IS 800, CL 6.4 Td6 = Aug by + 0.9 Abn bu \[\begin{align*} \text{Tab} &		The rose is present the second of the second	
Td6 = [Augly + 0.9 Aln fo] or Td6 = (0.9 Aun fu + Atg by \[\tag{3}\text{Vmi} \text{Jmo} \] Lv = (45 + 55 + 55) Aug = Lv x t = 155 x 6 = 930 mm ² Atg = Lt x t = 35 x 6 = 210 mm ²	Steps:	Theck for Black Shear Shear	
Tob = (0.9 Aunhu + Atg by \[\sum_{3} \sqrt{m_1} \] \[\sum_{3} \sqrt{m_1} \] \[\sum_{2} \sqrt{45 + 55 + 55} \] \[\text{Aug = Lv x t} \] \[\text{2 155 x 6} = 930 mm^{2} \] \[\text{Atg = 210 mm2} \]		page 33, IS 800, CL 6.4	
Tob = (0.9 Avnfu + Atg by \[\sum_{3} \sum_{11} \sum_{12} \] \[\Lv = 45 + 55 + 55 \] \[\Lv = 45 + 55 + 55 \] \[\Lv = 45 + 55 \] \[\Lv = 45 + 55 + 55 + 55 \] \[\Lv = 45 + 55 + 55 + 55 \] \[\Lv = 45 + 55 + 55 + 55 \] \[\Lv = 45 + 55 + 55 + 55 \] \[\Lv = 45 + 55 + 55 + 55 + 55 \] \[\Lv = 45 + 55 + 55 + 55 + 55 \] \[\Lv = 45 + 55 + 55 + 55 + 55 + 55 + 55 + 55			
Tob = (0.9 Aunfu + Atg by \[\sqrt{3}\sqrt{m}\) \\ \text{Lv = 45 + 55 + 55} \\ \text{Avg = Lv x t} \\ \text{2 155 x 6} = \text{930 mm}^2 \\ \text{Atg = 2 Lt x t} \\ \text{2 35 x 6} = \text{210 mm}^2			
$Lv = 45 + 55 + 55$ Avg = $Lv \times t$ = 155 × 6 = 930 mm ² Atg = $Lv \times t$ = 35 × 6 = 210 mm ²		100 = 0,9130170 And	-
Dtg 2 Lt x t 2 35 x 6 = 210 mm2			
Dtg 2 Lt x t 2 35 x 6 = 210 mm2		Aug - Luxt	
Dtg 2 Lt x t 2 35 x 6 = 210 mm2		2 155 × 6 = 930 mm ²	
		Large All and the second	
		Dtg = Ltxt = 35x6 = 210 mm2	
Aun = Aug _ D.sx doxt			9.0
		Aun = Aug - 8-5x doxt	
= 930 - D.5 x 18 x 6		U	-
z 660 mm 2		z 660mm 2	- d

Atn = Atg - 0.5 x do xt	
= 210 - 0.5×18 × 6	
= 156 mm ²	
Tdb = 2 930 x 250 + 0.9 x 156 x 4.10	
$\frac{1.25}{3\times1.1}$	
= 336.16 KN	
or or	
Td6 = 160.213 kN.	
160.213 BOKN	
100.219	
Llouis Land to the to the	
Hence Safe against black shear	
(0 C . D	
Step &: Desegn of enner membrone BG.	
max Load z - Gokn.	
factored Load = 1.5 × 60 = 90 km.	
Dura il in della Muia a la comina	
Since it is - ve Design à Comprenius membres	
Assume fed as SON/mm²	
$\Delta rea = 90 \times 10^3 = 1800 \text{mm}^2 = 18,00 \text{cm}^2$	
5p'	
from Steel table, Table 1, page 4.	
from the same of the same of the	
Sence it is a unes member Select Single	
angle Section	
choose ISA × 80×80×10	i i
A = 15.05 cm ² = 15.05 mm ²	
Tuu = 3-04cm	
Vv 2 1-55(m)	

	Ron Lalle
	$k_1 = 0.70$ $k_2 = 0.60$ $k_3 = 5$
	λe = 8,80
	from pas IS 800-2007 Page 35, Table 7
	d 2 0 - 4 9
	and the continue to a public better
	Page 3 4
	$\phi = 0.5 \left(1 + \lambda (\lambda - 0.2) + \lambda^2\right) \lambda = 2.80$
	φ = 5.05
	fed = fy/7mo
	$\phi + \left[\phi^2 - \lambda^2\right] = 0.5$
	= 24.56 N/mm ²
	Load = 24.56x 1505
	= 369.62 KN
	369.62> 90KN
	Section is Safe
	Design à Dr
	Connection
	Vnab = fub (MnAnb + MsAsb)
Sec.	Anb = 156.83mm2

Vnsb = 400 (1×156 B3) = 29 kns

Beauing Sleength

Vap6 = 2.5 k6 dt bu

Thio = 1.25

= 89.22 kN

Bolt value = Smaller = 29 kns

No 9 bolh = Design Road = 90 = 3 No.

Bolt value = 29.