

IAT 3

Sub:	Design Of RC Structural Elements						Code:	18CV53	
Date:	25/ 1 / 2022	Duration:	90 mins	Max Marks:	50	Sem:	5	Branch:	CIVIL

Note: Answer all question (Assume any missing data). IS456 and SP:16 code Book permitted

		Marks	OB	Е
		WILLIKS	CO	RBT
1	Design a rectangular beam of section 230mmX600mm of effective span 6m.	[20]	CO3	L2
	Effective cover for reinforcement should be kept as 50mm both compression			
	and tension side. Imposed load on the beam is 40kN/m. Use M20 concrete and			
	Fe 415 steel. Sketch the details of reinforcement. (assume Simply supported			
	Beam)			
2	Design a slab for a room of clear internal dimensions 3mX5m supported on wall	[20]	CO4	L2
	of 300mm thickness, with corner held down. Two adjacent edges of the slab are			
	continuous and other two discontinuous. Live load on the slab is 3kN/m ² .			
	Assume floor finish of 1kN/m ² .Use M20 concrete and Fe 415 steel. Sketch the			
	details of reinforcement.			
3	An RCC short column of size 400X500mm is carrying factored load of 3000KN.	[10]	CO5	L2
	Design the column assuming $e_{min} < 0.05D$. Use M25 concrete and Fe415 steel.			

USN	1	C	R		C	V		

CMR INSTITUTE OF TECHNOLOGY

IAT 3

Sub:	Design Of RC Structural Elements Cod						le: 18CV53					
Date:	e: 25/1/2022 Duration: 90 mins Max Marks: 50 Sem: 5 Bra							Brai	nch: CIVIL			
Note:	Note: Answer all question (Assume any missing data). IS456 and SP:16 code Book perm								ermi	tted		
								Marks	0	OBE		
								Mark	CO	RBT		
1	Design a rectangular beam of section 230mmX600mm of effective span 6m.							6m.	[20]	CO3	L2	
	Effective cover for reinforcement should be kept as 50mm both compression											
	and tension side. Imposed load on the beam is 40kN/m. Use M20 concrete and											
	Fe 415 steel. Sketch the details of reinforcement. (assume Simply supported											
	Beam)											
2	Design a slab for a r	oom of clea	r internal	dimension	ıs 31	nX5m	support	ed on	wall	[20]] CO4	L2
	of 300mm thickness, with corner held down. Two adjacent edges of the slab are											
	continuous and other two discontinuous. Live load on the slab is 3kN/m ² .											
	Assume floor finish of 1kN/m ² .Use M20 concrete and Fe 415 steel. Sketch the											
	details of reinforcem	nent.										
3	An RCC short column of size 400X500mm is carrying factored load of 3000KN. [10] CO5 L2								L2			
	Design the column a	ssuming e _{mi}	n < 0.05D	. Use M2	co	ncrete a	nd Fe4	15 ste	el.			

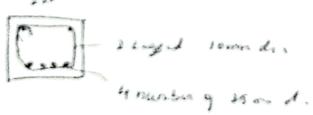
DRCS

IAT-3 Solution

Load calculation

. Ase = ESI lamm

Ass, = 1210.8 mm

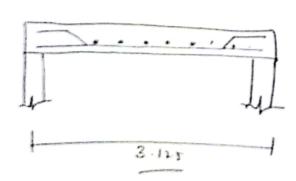

At = 359. 05 mm'

Provide, 4 numbers of comm die

Design of when

- 103 .64

Provide 2 leged 1 nm @ 300c/c.


Dipty calculation.

$$\frac{1}{36} = \frac{2000}{20} = 130 \text{ mm}$$

Effective span

Load calculation

Mas

(2)

Aren of 8 tal (Ase)

Pu = 0.4 tu Ac + 0.67 & AL

Ac = Ag - ASL = (400 x500) - AZL

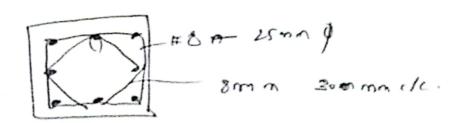
AL = 200600 - AL

ASL = 3730.6 mm2

using 25mm & box \$\frac{T}{4} 252 = 490mm^2

Nº 01 5am = 3130.5 = 7-6 7 8

· Provide 3-25 mm \$


Latual tics.

> + x 25 = 6.25 nm

-> 6mm : use 8mm din trus .

Pitch of tice.

→ 400 mm , > 16x25 = 400 mm - 5 300mm

