
CMR									 STIND 25 YEARS *
INSTITUTE OF TECHNOLOGY	USN	1	С	R		С	V		* CELEB
TECHNOLOGI									CMR
			IAT	5					

Sub: Design Of RC Structural Elements Code: 18CV53 Date: 7/02/2022 Duration: 90 mins Max Marks: 50 Sem: 5 Branch: CIVIL Note: Answer any Five question (Assume any missing data) OBE Marks СО RBT 1 What are the assumptions made in limit state of design of collapse in flexure in [10] CO₃ L2 single reinforced beam section? 2 An RCC beam 200mmX500 mm effective is subjected to a factored moment of [10] **CO2** L2 200kNm. Find the reinforcement required. Use M20 concrete and Fe415 steel 3 Explain the difference between working stress method and Limit state method. [10] CO2 L2

CMR INSTITUTE OF TECHNOLOGY

IAT 5

Sub:	Design Of RC Structural Elements Co					Cod	e:	18CV53			
Date:	7/02/2022Duration:90 minsMax Marks:50Sem:5Branch:CIVIL										
Note:	Note:Answer any Five question (Assume any missing data)										
									Mark	0]	BE
lviar.							IVIAIK	S CO	RBT		
1 What are the assumptions made in limit state of design of collapse in flexure in						re in	[10]	CO1	L2		
	single reinforced beam section?										
An RCC beam 200mmX500 mm effective is subjected to a factored moment of [1						[10] CO1	L2			
	200kNm. Find the reinforcement required. Use M20 concrete and Fe415 steel.										
	(Checks should be done for minimum depth & minimum reinforcement)										
3 Explain the difference between working stress method and Limit state method. [10]] CO2	L2					

4	Derive the expression for Depth of Neutral axis (N.A= $0.42 X_u$) in the case Rectangular RCC beam design.	[10]	CO2	L2
5	An RCC beam is required to carry a uniform distributed load of 30kN/m inclusive of its self weight. The effective span of beam is 9m. Use M30 and Fe415 steel. Find amount area of steel required to resist the load.(Checks should be done for minimum depth & minimum reinforcement)		CO3	L3
6	Write difference between Short term deflection and long term deflection?	[10]	CO5	L3

	Derive the expression for Depth of Neutral axis (N.A= $0.42 X_u$) in the case Rectangular RCC beam design.	[10]	CO2	L2
	An RCC beam is required to carry a uniform distributed load of 30kN/m inclusive of its self weight. The effective span of beam is 9m. Use M30 and Fe415 steel. Find amount area of steel required to resist the load(Checks should be done for minimum depth & minimum reinforcement)	[10]	CO3	L3
6	Write difference between Short term deflection and long term deflection?	[10]	Co5	L3

5.Difference between Short term deflection and Long term deflection The factors influencing Short term deflection are

- (a) magnitude and distribution of live loads,
- (b) span and type of end supports,
- (c) cross-sectional area of the members,

(d) amount of steel reinforcement and the stress developed in the reinforcement,

(e) characteristic strengths of concrete and steel, and

(f) amount and extent of cracking.

The long-term deflection is almost two to three times of the short-term deflection. The following are the major factors influencing the long-term deflection of the structures.

- (a) humidity and temperature ranges during curing,
- (b) age of concrete at the time of loading, and
- (c) type and size of aggregates, water-cement ratio, amount of compression reinforcement, size of members etc., which influence the creep and shrinkage of concrete.
- 1) What are the assumptions made in limit state of design of collapse in flexure in single reinforced beam section?

(a) Plane sections normal to the axis remain plane after bending. It means that the strain at any point in the cross-section is proportional to the distance from the neutral axis.

(b) The maximum strain in concrete at the outermost compression fibre is taken as 0.0035 in bending.

(c) The relationship between the stress-strain distribution in concrete is assumed to be parabolic.

For design purpose, the compressive strength of concrete is assumed to be parabolic, as shown in Fig. 4.1. For design purpose, the compressive strength of concrete is assumed to be 0.67 times the characteristic strength of concrete. The partial safety factor (rmc)=1.5 shall be applied in addition to this

Maximum compressive stress in concrete =

0.67fck1.5

where fck= Characteristic strength of concrete.

(d) The tensile strength of the concrete is ignored.

(e) The stresses in the reinforcement are taken from the stress-strain curve for the type of steel used *as shown in Fig. 4.2.*

Characteristic curve f_y f_y $f_y/1.15 = 0.87 f_y$ $E_g = 200000 \text{ N/mm}^2$ 3.

$$b = 230 \text{ mm}$$

$$M_{u} = 800 \text{ km/m} \Rightarrow 200 \text{ x}10^{4} \text{ mmg}$$

$$\frac{1}{9} = 415 \text{ m} \text{ mm}^{3}$$

$$\frac{d^{3}}{d} = \frac{50}{500} = 01$$

$$\frac{d}{d} = 353 \text{ m} \text{ mm}^{3}$$

$$\frac{\text{miting moment } g - 841 \text{ stans}}{\text{miting moment } g - 841 \text{ stans}} (d = 0.42 \text{ stars})$$

$$T_{u} = 0.48 \text{ d}$$

$$M_{u} \text{ lin} = 158 \text{ stars} 8048 \text{ Nmm}$$

$$M_{u} = -M_{u} - M_{u} \text{ lm}$$

$$= 200 \text{ x}10^{4} - 1586 \text{ stars}}{\text{N}u}$$

$$\frac{M_{u}}{R} = -M_{u} - M_{u} \text{ lm}$$

$$= 100 \text{ x}10^{4} - 1586 \text{ stars}}{\text{N}u}$$

$$\frac{M_{u}}{R} = -M_{u} - M_{u} \text{ lm}$$

$$= 100 \text{ x}10^{4} - 1586 \text{ stars}}{\text{M}u}$$

$$\frac{M_{u}}{R} = -M_{u} + M_{u} \text{ lm}$$

$$= 100 \text{ x}10^{4} - 1586 \text{ stars}}{\text{M}u}$$

$$\frac{M_{u}}{R} = -M_{u} + M_{u} \text{ lm}$$

$$= 100 \text{ stars}}{(d - 0.42 \text{ stars})}$$

$$= 1100 \text{ stars}}{\text{N}u}$$

$$\frac{M_{u}}{R} = -\frac{M_{u} \text{ lm}}{0.42 \text{ lg}(d - d^{4})} = 254 \text{ stars}}{\text{N}u}$$

$$\frac{M_{u}}{R} = -\frac{M_{u} \text{ stars}}{0.42 \text{ lg}(d - d^{4})} = 254 \text{ stars}}{\text{N}u}$$

$$\frac{M_{u}}{R} = -\frac{M_{u} \text{ stars}}{0.42 \text{ lg}(d - d^{4})} = 254 \text{ stars}}{\text{N}u}$$

$$\frac{M_{u}}{R} = -\frac{M_{u} \text{ stars}}{0.42 \text{ lg}(d - d^{4})} = 254 \text{ stars}}{\text{N}u}$$

	Working Stress Method	Limit State Method
1.	It is easy for calculation.	It require more calculation so it
2	Materials strengths are not	make some difficult to design.
2		Materials strengths are fully
	fully utilized in designing the	utilized in designing the member
	member of structure.	of structure.
1	It does not gives idea about	It gives idea about the excess
	the excess load which a	load which a structure can carry
	structure can carry beyond the	beyond the working load
_	working load without collapse.	without collapse.
4	In this method, Concrete and	This method is based on the
	steel are considered elastic	actual stress strain curves for
	and the strain curve is linear	steel and concrete. For concrete
	for both.	the stress strain curve is
	for both	nonlinear.
5	No factor of safety is used for	Design load are obtained by
	loads.	multiplying partial safety factors
		of load to the working loads.
5	This method gives	This method gives economical
	uneconomical design of	design of structure.
	structure.	
7	In this method actual load,	In this method actual load,
	permissible stresses are	permissible stresses are
	according to serviceability	according to probabilistic
	approach.	approach.
	ty = 415 N/mm	
Load		
	= 37.5 Km.	
	$M_{\rm H} \simeq \frac{n_{\rm L} \lambda^{\rm L}}{8} = \frac{37.5 \times 6^{\rm L}}{8} \simeq 300$	hyn (194
Lim	My = <u>white</u> = <u>37.3x6</u> = 200, iting moment of resistance feelow	ومدر المربو
Lìm	iting moment of relictance fector. Xuron = 0.418	
Lim	iting moment of reliatance fector	
Lim	$\frac{i tiny}{d} = 0.4\pi e$ $\frac{\chi_{unsus}}{d} = 0.4\pi e$ $R_{u} = 0.36 \ tu \ \chi_{unsus} \left(1 - \frac{0.4}{d}\right)$ $R_{u} = 4.13$	
	$\frac{i tiny}{d} = 0.4\pi e$ $\frac{\chi_{unsus}}{d} = 0.4\pi e$ $R_{u} = 0.36 \ tu \ \chi_{unsus} \left(1 - \frac{0.4}{4}\right)$ $R_{u} = 4.13$ $imum \ eff \ \pi_{up} \ ind \ b = e^{5} imm$	
	$\frac{i tiny}{d} = 0.4\pi e$ $\frac{\chi_{unsus}}{d} = 0.4\pi e$ $R_{u} = 0.36 \ tu \ \chi_{unsus} \left(1 - \frac{0.4}{d}\right)$ $R_{u} = 4.13$	
min	iting moment of resultance feetor. $\frac{\chi_{UMM}}{d} = 0.412$ $R_{UL} = 0.36 \ fee \ \chi_{UMM} \left(1 - \frac{0.4}{2}\right)$ $R_{UL} = 44.13$ imum ffs required , b= 25.6 mm $d_{eq} = \int \frac{M_{U}}{R_{1.6}} = \frac{5.80}{2} \text{ mm}$ $d_{eq} = \int \frac{M_{U}}{R_{1.6}} = \frac{5.80}{2} \text{ mm}$ $d_{eq} = \int \frac{M_{U}}{R_{1.6}} = \frac{5.80}{2} \text{ mm}$	
າກນຳ	iting moment of resultance feetor. $\frac{\chi_{UMM}}{d} = 0.412$ $R_{UL} = 0.36 \ fee \ \chi_{UMM} \left(1 - \frac{0.4}{2}\right)$ $R_{UL} = 44.13$ imum ffs required , b= 25.6 mm $d_{eq} = \int \frac{M_{U}}{R_{1.6}} = \frac{5.80}{2} \text{ mm}$ $d_{eq} = \int \frac{M_{U}}{R_{1.6}} = \frac{5.80}{2} \text{ mm}$ $d_{eq} = \int \frac{M_{U}}{R_{1.6}} = \frac{5.80}{2} \text{ mm}$	<u>z</u> ≫…) L

6a

One Way Slab	Two Way Slab
One way slab is supported by beams in only 2 sides.	Two way slab is supported by beams in all four sides.
The ratio of longer span panel (L) to	The ratio of longer span panel (L) to
shorter span panel (B) is equal or greater	shorter span panel (B) is less than 2. Thus,
than 2. Thus, L/B >= 2	L/B < 2.
Main reinforcement is provided in only one	Main reinforcement is provided in both the
direction for one way slabs.	direction for two way slabs.