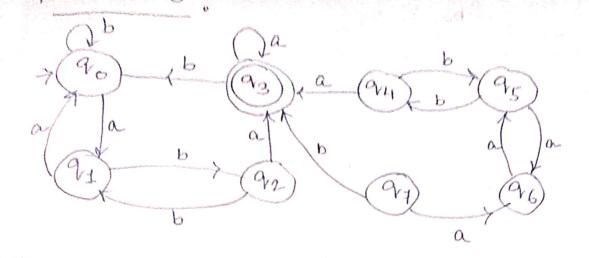
BUOLUUUUUUUUU Definition by induction on the headth of imput springsformal defor of extended F E B., S: BXZ +2 Stypansition Basis: S(a, c) = fai - Iwithout neading any 1/P Symbol, we was automation using be there in the same pransition function: Starr]. complete formal defn of NFA: C. B. S. C. R. NFA M is a 5 tuple = (8, I, y, 6, F) where - B: finite set of states Po: Po E B is shart state. F: fimite set of final states where : i/p alphabet Junet on)

The language of NFA, $4(M) = \{ \omega \mid \delta(q_0, \omega) \land F \neq q \}$ now can white that S(a, w) = S win 2 = 1 mmInduction: Suppose w is of the form main Induction w = rear where a is the form main Symbol and z is such part of w. $(\bigcup_{i=1}^{n} g(p_i, a) = \int_{i=1}^{n} [i_1, i_2] \cdot [p_m]$ S(a, x) = fpy, p2, oo, party - det

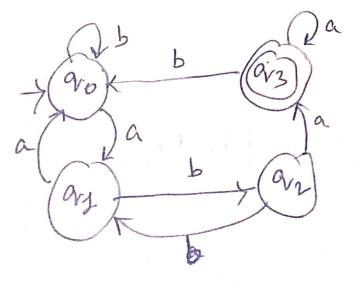
According to subset construction,

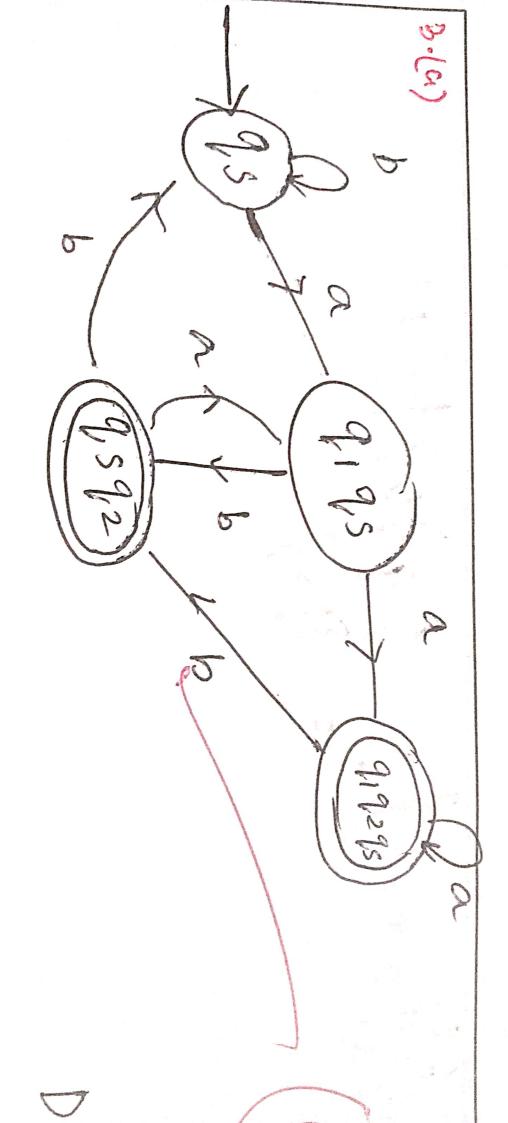

$$S_{p}(P_{1}, P_{2}, \cdots P_{n}], a) = \bigcup_{i=1}^{U} S_{U}(P_{i}, a) \cdots (a)$$
Now using equⁿ (d) and equ^m (2), we
can write,

$$S_{p}(q_{0}, \omega) = S_{p}(S_{p}(Iq_{0}, \chi), a)$$

$$= S_{p}(IP_{3}, P_{3}, \cdots, P_{k}I, a)$$

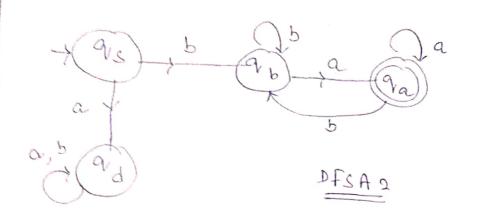
$$= \bigcup_{i=1}^{U} S_{N}(P_{i}, a)$$
So, we can write, $S_{p}(q_{0}, \omega) = S_{N}(q_{0}, \omega)$
and if $S_{p}(q_{0}, \omega) \notin F$ and $S_{N}(q_{0}, \omega) \notin F \ddagger p$,
Here we cange say that $L(D) = L(N)$
 $\rightarrow \bigotimes_{D} i \notin S_{p}(q_{0}, \omega) \notin F$ and
 $S_{N}(q_{0}, \omega) \cap F \neq O$ On,
 $S_{D}(q_{0}, \omega) (n F = a)$
 $S_{N}(n_{0}, \omega) (n F = a)$

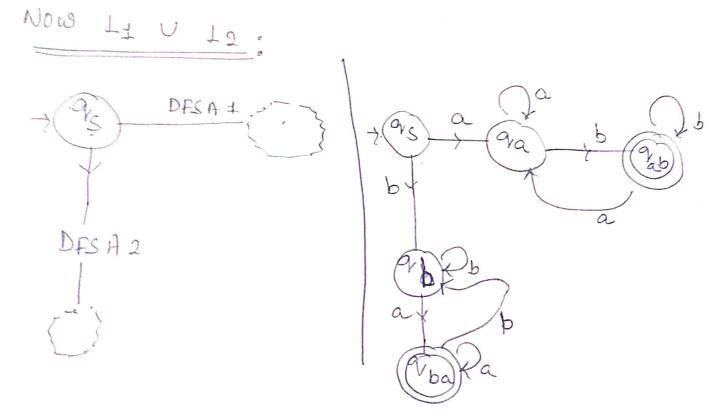

Marine


remove all of them.

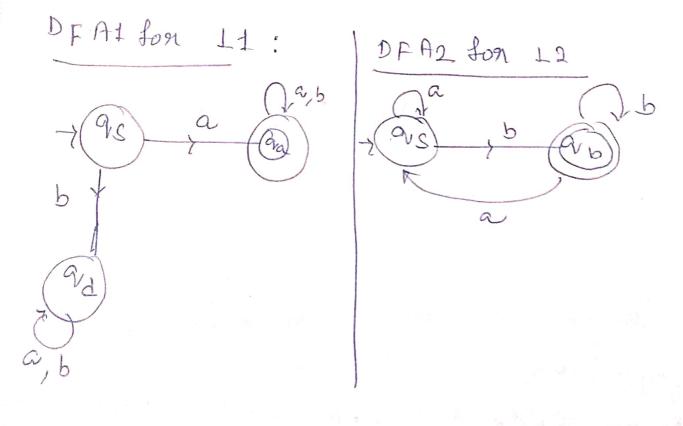
		a	6	O-equivalence: Jaro, 91, 92][93
4	40	024	or _o	
-				1-equivalence:
	91	20	92	[90,94] [92] [93]
4				
	gr2	93	21	2-equivalence:
	C		- 0.	[20] [94] [92] [93]
	² ³	(⁹ /3)	· aro	
10				in alon would be-

9: the final minimized automaton would in


HUR & (P, 10) & F & & & (B, 10) & F HUR WELL an impur similation of Status and pares. XI + B Status a finite set of Status and pares. Is a finite set of final status. HW & (P,W) EF A & (W,W) EF equivalent if the following conditions do hold. equivalent states. Two states p and & are Intermuzation of oth an d

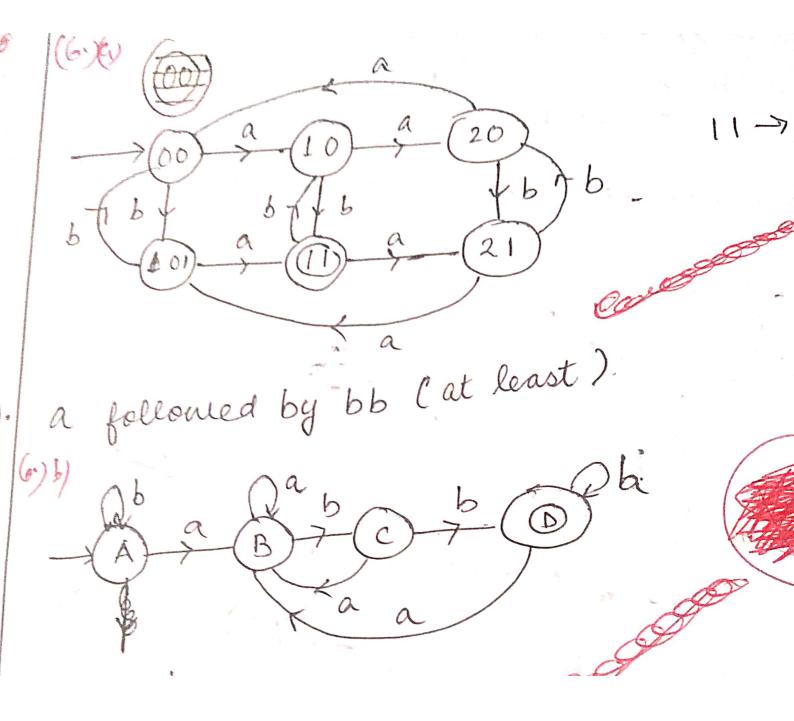


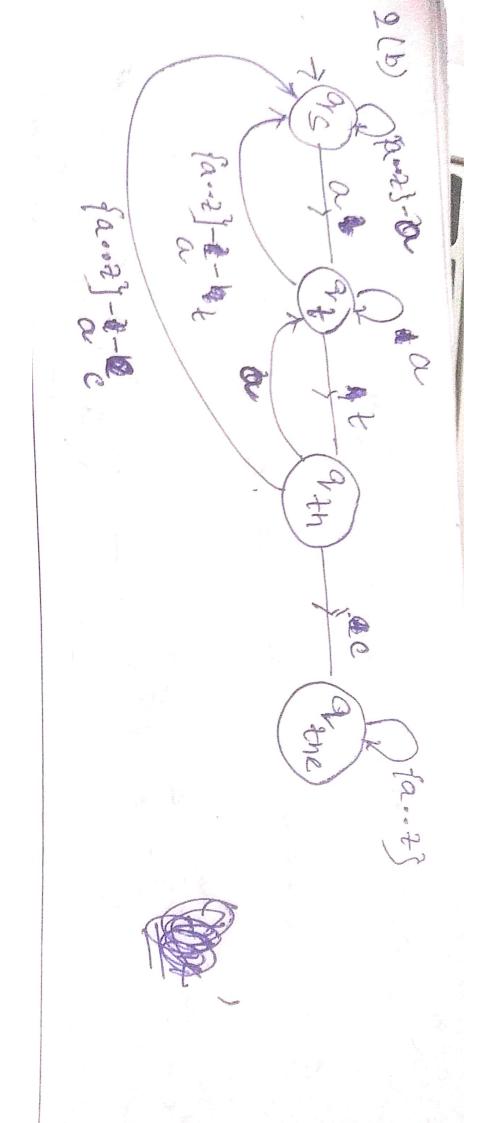
DFA 1953 an. 1 a. 0 192,95} -> 95 [9,95] [95], 95 303 1 2927 21 [9592] [2123] [2195] 303 743 [95] 9 2 * [959] [9193] &(9s, 0) = { 4 935 Elf / CLight 2521 950 \$ 25, 25 ->> Robersking of 00 8(9550)= [959] 8 (95,0] = 193.91} S @ 8 (9 5, 1) = {95} = 22,259 U φ 8 8 (9, s, o) v S (9, s, o) = 291,952 39,5 } 39,203 S(qs, 1)US(q,11) = = 29, 9, 5, 0 = 29, 9, 5, 0 = 901 95 S(9, s, 0) US(9,2,0) φ

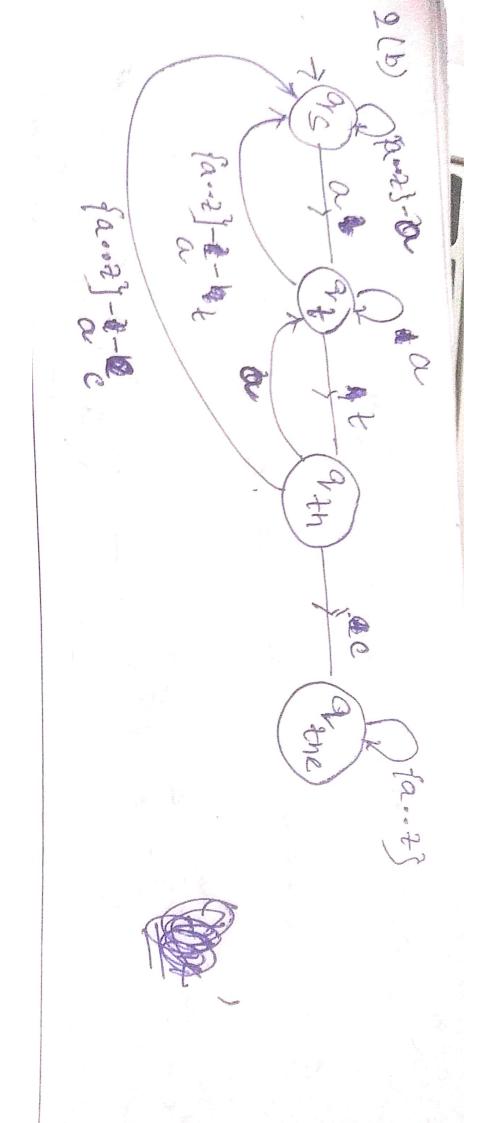

b DFA 1 §9.5 } 292,953 9.5 [9, 9, 5][9s] $\rightarrow qs$ 29,23 96) 91 3\$ [9.5 92] [9,19,5] [2195] 203 743 [95] 9,2 [9,19,5] * [9,592] = { 74 935 \$(9s, 0) E 15 / (L, 2) & 9,50 \$ 9,5, 9,5 L bacessing of the 5307=198 (9.5,0) = {9.5.91} S S @ & (9, s, 1) = {9, s} = 29,25 U þ \$ S (9, s, o) U S (9, s; o) = 2911957 S(9, 1) US(9,11) = 39,5 } 39,20 = 29,95 × 9,2 (9, s, o) US(9,2, o) L φ

(40) Topic - 2 Onion : - OF DEA- Start & and with different 5) Symbol. I = ja, bj LI = Jab, aab, abb, ... - Startsdilpithbre all she and ends with b. 12 = p'ba, baa, bba, - - - - Jragust with a b and ends with a. for 11 . b 6 a avs ova. h a ard n i DFSAY

- Set of all strings - starts and ends with different symbolf. (i) final states of DFAL and DFAL - will remain find states. (i) start states of DFAL and DFAL - will remain start states. Concatenation


NOW) σ 2 DPAY. DPA2. Jon Ya 8 9 5 5 @ Final shake of DFAJ - Wont J-pe' Stant State of DEAR - WONT MINING . Share Stare. T Sharker of DEAL and between the final make a connetion (A) NORD (A)


Cross Prioduct


$$L_{f} = \int_{a}^{b} b, b, c, aa, baa, aba, ...]$$

= Set of all strings - containing even no
of a's.
 $L_{2} = \int_{a}^{a} aa, c, bb, abb, bab, ... J$
DFAL for L_{f}^{b}
 $A = \int_{a}^{b} a + \int_{a}$

DEA3 for Errors product of 11 12 [951, 9a] × [952, 9b] (95,952), 95196, 98952, 9ab J $\delta(qs_1, a) = a_a$ $\delta(\alpha_{s_2}, \alpha) = \alpha_{s_2}$ 951.952 S (951.952, a) avs2 $= (q_a, q_s)$ a Ь $\delta(qs_1,b) = q_1$ b b (952, b) = a · · · & (951952, E aja q. 9151.9b = (951.96 Ø Rest are done a in the same way. Complement Make a Swap between Start find and non final State State

5 1 2 Ø 4 mot contain a: R) q16 8 J T S 3 市 A 915

USIN					

Sub:	Automata Theory and ComputabilitySub Code:18CS54Bra							Brand	ch: ISE		
Date:	13/11/20	13/11/20 Duration: 90 min's Max Marks: 50 Sem/Sec: V A, B & C								OI	BE
	21	Answer	any FI	VE FULL Ques	tions				MARKS	СО	RBT
1)	a) Write down the formal definition of NFA (Non deterministic finite automata) explain extended transition function and language acceptance of NFA.									CO1	L2
	b) Prove the equivalence between NFA and DFA. (Deterministic finite automata)									CO1	L2
2)	Constr	uct minimal DFA	for the	e following lang	guage	s.			[5+5=10]	CO3	L3
	 a) L = {a³bwa⁴ w ∈ (a+b)*}, ∑ = {a,b}. b) Set of strings containing "atc" anywhere in a string of {a-z}, that is, ∑ = {a,,z}. E.g., "atmeatcpqat" will be accepted but not "axydaa" etc 										L3
3)		Convert the foll					ing state, g ₂ is	the	[5+5=10]	CO2	L3
	qs q1 q2 (1 p t1	final state, and {	$\{\Phi\}$ def a $\{q$ $\{q$ $\{q$ ansition nput st	notes the null so $\frac{1, q_s}{2}$ Φ n table of the for ring '00100' us	et.	B $\{q_s\}$ $\{q_2\}$ $\{\Phi\}$ ing NFA. De	escribe the				L3
	0 1										
	qs			$ _{1}, q_{s}$		$\{q_s\}$					
	q_1		{]	,		$\{q_2\}$					
	q ₂		4	,		$\{\Phi\}$				0.0.0	× 0
4)	 (a) Define equivalent states of a DFA. (b) Consider the following transition of table of a DFA and apply minimization algorithm on it to find out the minimal DFA. Here q_s is the starting state, q_s the final state. 							ion	[3+7=10]	CO2 CO2	L2 L3
			a			b					
	$\mathbf{q}_{\mathbf{s}}$		q			q _s					
	<u>q</u> ₁		q			q ₂					
	<u>q</u> ₂ q ₃		q			q_1 q_s					
	$\begin{array}{c cccc} q_3 & q_3 & q_s \\ \hline q_4 & q_3 & q_5 \end{array}$										
	q4 q5		q			q ₅ q ₄					
	q_6 q_7 q_5										
	q ₇		q			q ₃					
I			1								

Internal Assessment Test 1 – November 2021

5	Discuss the following operations of DFA with example. (a) Union (b) Concatenation (c) Cross product (d) Complement	[2.5+2.5+2. 5+2.5=10]		L2
6	 Construct DFA for the following languages. a) Set of all strings over ∑ = {a,b} where (number of a)%3 = 1 and (number of b)%2 = 1. Here % denotes remainder. E.g : aaaabbb - accepted, aaaaaaabbbbb - accepted, aaabbb - rejected, aaaabbbb - rejected etc b) Set of all strings where every 'a' is immediately followed by at least two 'bs', ∑ = {a,b}. E.g : bbabbaba - it will be rejected, bbabbabbbb - will be accepted etc 	5+5=10	CO3	L3 L3

Faculty Signature

CCI Signature

HOD Signature