
1(a). Define Data Structures. Explain the different types of data structures with

examples.

Data may be organized in many different ways. The logical or mathematical model of

a particular organization of data is called a data structure.

Data structures are generally classified into Primitive data Structures & Non-primitive

data Structures.

1. Primitive data Structures: Primitive data structures are the fundamental data types

which are supported by a programming language. Basic data types such as integer, real,

character and Boolean are known as Primitive data Structures. These data types consists

of characters that cannot be divided and hence they also called simple data types.

2. Non- Primitive data Structures: Non-primitive data structures are those data

structures which are created using primitive data structures. Examples of non-primitive

data structures is the processing of complex numbers, linked lists, stacks, trees, and

graphs.

Based on the structure and arrangement of data, non-primitive data structures is further

classified into Linear Data Structure & Non-linear Data Structure.

1.Linear Data Structure: A data structure is said to be linear if its elements form a

sequence or a linear list. There are basically two ways of representing such linear

structure in memory-One way is to have the linear relationships between the elements

represented by means of

sequential memory location. These linear structures are called arrays. The other way is

to have the linear relationship between the elements represented by means of pointers

or links. These linear structures are called linked lists.

The common examples of linear data structure are Arrays, Queues, Stacks, Linked lists

2.Non-linear Data Structure: A data structure is said to be non-linear if the data are not

arranged in sequence or a linear. The insertion and deletion of data is not possible in

linear fashion. This structure is mainly used to represent data containing a hierarchical

relationship between elements. Trees and graphs are the examples of non-linear data

structure.

1(b). What is the formula to calculate the location in the row major and column major?

Suppose each student in a class of 25 is given 4 tests, assume the students are numbered

from 1 to 25, and the test scores are assigned in the 25*4 matrix called SCORE. Suppose

Base(SCORE)=158, w=4, and the programming language uses column major order to

store this 2D array, then find the address of 3rd test of 12th student i.e SCORE(15,2).

2(a). Convert the infix expression ((a/(b-c+d))*(e-a)*c) to postfix expression and evaluate

that postfix expression for given data a=6, b=3, c=1, d=2, e=4(using stack representation).

2(b). Write a C program with an appropriate structure definition and variable

declaration to store information about an employee, using nested structures. Consider

the following fields like: ENAME, EMPID, DOJ(Date, Month, Year).

 #include<stdio.h>

struct e

{

 int empid;

 char employee_name[100];

 char employee_department[100];

 int employee_age;

 int employee_doj[3];

 int salary[3];

}

a[];

int n=0;

void input()

{

 printf("Enter the employee's ID.: ");

 scanf("%d", &a[n].empid);

 printf("Enter the employee's name: ");

 scanf(" %[^\n]", a[n].employee_name);

 printf("Enter the employee's department.: ");

 scanf(" %[^\n]",a[n].employee_department);

 printf("Enter the employee's age: ");

 scanf("%d", &a[n].employee_age);

 printf("Enter the employee's date of joining (xx xx xxxx): ");

 scanf("%d", &a[n].employee_doj[0]);

 scanf("%d", &a[n].employee_doj[1]);

 scanf("%d", &a[n].employee_doj[2]);

 printf("Enter the employee's salary (Basic DA HRA): ");

 scanf("%d", &a[n].salary[0]);

 scanf("%d", &a[n].salary[1]);

 scanf("%d", &a[n].salary[2]);

 n++;

}

void output()

{

 for(int i=0;i<n;i++)

 {

 printf("Record #%d:\n", i+1);

 printf("Employee's ID: %d\n", a[i].empid);

 printf("Employee's name: %s\n", a[i].employee_name);

 printf("Employee's department: %s\n",

a[i].employee_department);

 printf("Employee's age: %d\n", a[i].employee_age);

 printf("Employee's date of joining:

%d/%d/%d\n",a[i].employee_doj[0], a[i].employee_doj[1], a[i].employee_doj[2]);

 printf("Employee's salary: Rs. %d\n",

a[i].salary[0]+a[i].salary[1]+a[i].salary[2]);

 printf("1. Basic = Rs. %d\n", a[i].salary[0]);

 printf("2. DA = Rs. %d\n", a[i].salary[1]);

 printf("3. HRA = Rs. %d\n", a[i].salary[2]);

 }

}

int main()

{

 while(1)

 {

 int n;

 printf("1. Input\n");

 printf("2. Output\n");

 printf("3. Exit\n");

 scanf("%d", &n);

 switch(n)

 {

 case 1: input();

 break;

 case 2: output();

 break;

 case 3: return 0;

 default: printf("Invalid choice!\n");

 }

 }

}

3. What is dynamic memory allocation? Explain different functions associated with

dynamic memory allocation and deallocation with syntax and example. Code a C

program to illustrate the same for allocating memor to store n integers and find the sum

using dynamic memory allocation.

Dynamic memory allocation is the process of assigning the memory space during

the execution time or the run time. It refers to performing manual memory

management for dynamic memory allocation via a group of functions in the

standard library, namely malloc, realloc, calloc and free.

1. malloc(): The function malloc allocates a user- specified amount of memory

and a pointer to the start of the allocated memory is returned.

If there is insufficient memory to make the allocation, the returned value is

NULL.

Syntax: data_type *x;

 x= (data_type *) malloc(size);

Where,

x is a pointer variable of data_type

size is the number of bytes

Ex: int *ptr;

 ptr = (int *) malloc(100*sizeof(int));

2. calloc(): The function calloc allocates a user- specified amount of memory and

initializes the allocated memory to 0 and a pointer to the start of the allocated

memory is returned. If there is insufficient memory to make the allocation, the

returned value is NULL. Syntax: data_type *x;

x= (data_type *) calloc(n, size);

Where,

data_type *x;

x= (data_type *) calloc(n, size);

x is a pointer variable of type int

n is the number of block to be allocated

size is the number of bytes in each block

Ex: int *x

 x= calloc (10, sizeof(int));

The above example is used to define a one-dimensional array of integers. The

capacity of this array is n=10 and x [0: n-1] (x [0, 9]) are initially 0

3. realloc():

->Before using the realloc() function, the memory should have been allocated

using malloc() or calloc() functions.

->The function relloc() resizes memory previously allocated by either mallor or

calloc, which

means, the size of the memory changes by extending or deleting the allocated

memory.

->If the existing allocated memory need to extend, the pointer value will not

change.

->If the existing allocated memory cannot be extended, the function allocates a

new block and copies the contents of existing memory block into new memory

block and then deletes the old memory block.

->When realloc is able to do the resizing, it returns a pointer to the start of the new

block and when it is unable to do the resizing, the old block is unchanged and the

function returns the value NULL

Syntax: data_type *x;

 x= (data_type *) realloc(p, s);

The size of the memory block pointed at by p changes to S. When s > p the

additional s-p

memory block have been extended and when s < p, then p-s bytes of the old block

are freed.

4. free()

Dynamically allocated memory with either malloc() or calloc () does not return

on its own. The programmer must use free() explicitly to release space.

Syntax: free(ptr);

This statement cause the space in memory pointer by ptr to be deallocated

4(a). Differentiate between structure and unions.

4(b). Write a C function to:

i)printf("Enter element to insert : ");

 scanf("%d", &num);

 printf("Enter the element position : ");

scanf("%d", &pos);

if(pos > size+1 || pos <= 0)

 { printf("Invalid position! Please enter position between 1 to %d", size); }

else { for(i=size; i>=pos; i--)

 { arr[i] = arr[i-1]; }

 arr[pos-1] = num; size++;

printf("Array elements after insertion : ");

 for(i=0; i<size; i++)

 { printf("%d\t", arr[i]); } }

 return 0; }

Ii)printf("Enter the element position to delete : ");

 scanf("%d", &pos);

 if(pos < 0 || pos > size)

{ printf("Invalid position! Please enter position between 1 to %d", size); }

else {

for(i=pos-1; i<size-1; i++)

{ arr[i] = arr[i + 1]; }

printf("\nElements of array after delete are : ");

for(i=0; i<size; i++)

{ printf("%d\t", arr[i]); } }

return 0; }

5. Define stack. Write a C program demonstrating the various stack operations,

including cases for overflow and underflow of stacks.

A stack is an ordered list in which insertions (pushes) and deletions (pops) are

made at one end called the top.

Given a stack S= (a0, ... ,an-1), where a0 is the bottom element, an-1 is the top

element, and ai is on top of element ai-1, 0 < i < n.

Code:

#include <stdio.h>

int MAXSIZE = 8; int stack[8]; int top = -1;

int isempty() {

 if(top == -1)

 return 1;

 else

 return 0;}

 int isfull() {

 if(top == MAXSIZE)

 return 1;

 else

 return 0;}

int peek() {

 return stack[top];}

int pop() {

 int data;

 if(!isempty()) {

 data = stack[top];

 top = top - 1;

 return data;

 } else {

 printf("Could not retrieve data, Stack is empty.\n");

 }}

int push(int data) {

 if(!isfull()) {

 top = top + 1;

 stack[top] = data;

 } else {

 printf("Could not insert data, Stack is full.\n");

 }}

int main() {

 // push items on to the stack

 push(3);

 push(5);

 push(9);

 push(1);

 push(12);

 push(15);

 printf("Element at top of the stack: %d\n" ,peek());

 printf("Elements: \n");

 // print stack data

 while(!isempty()) {

 int data = pop();

 printf("%d\n",data);

 }

 printf("Stack full: %s\n" , isfull()?"true":"false");

 printf("Stack empty: %s\n" , isempty()?"true":"false");

 return 0;}

6(a). Write a C function to perform pattern matching.

#include <stdio.h>

#include <string.h>

int match(char [], char []);

int main() {

 char a[100], b[100];

 int position;

 printf("Enter some text\n");

 gets(a);

 printf("Enter a string to find\n");

 gets(b);

 position = match(a, b);

 if (position != -1) {

 printf("Found at location: %d\n", position + 1);

 }

 else {

 printf("Not found.\n");

 }

 return 0;

}

int match(char text[], char pattern[]) {

 int c, d, e, text_length, pattern_length, position = -1;

 text_length = strlen(text);

 pattern_length = strlen(pattern);

 if (pattern_length > text_length) {

 return -1;

 }

 for (c = 0; c <= text_length - pattern_length; c++) {

 position = e = c;

 for (d = 0; d < pattern_length; d++) {

 if (pattern[d] == text[e]) {

 e++;

 }

 else {

 break;

 }

 }

 if (d == pattern_length) {

 return position;

 }

 }

 return -1;

}

6(b). What is the output of the following code?

6,6

3,4

6,2

4,6

