$s = q_0$

Internal Assessment Test 1 – Nov 2021

	Internal Asses	siment Test	1	∠1		_					
Sub:	Automata Theory and Computability		Sub Code:	18CS54	Branch:	CSE					
Date:	13/11/2021 Duration: 90 mins Max	Marks: 50	Sem / Sec:	5 A	A,B,C		OF	BE			
	Answer any FIVE FUL	L Questions			MA	ARKS	СО	RBT			
1 (a)	Define the following with examples: i) String ii) Language Ans: String: A finite Sequence, possibly empty, of symbols drawn from some alphabet Σ . Given any alphabet, the shortest string is ε . Σ^* is the set of all possible strings over an alphabet Σ . Example: English Alphabet $\{a, b, c,, z\}$ Strings: $\{\text{sat}, \text{laugh}, \text{happy}\}$ Binary Alphabet $\{0,1\}$ Strings: $\{011, 111, 1000, 0110\}$ Language: A language (finite/infinite) is a set of strings over a given alphabet, Σ . If there is more than one language, we will use Σ_L to denote alphabets from which language L is formed. Eg. $L = \{w \in \{0,1\}^* : w \text{ begins and ends in a and } w >= 2\}$ Strings that belong to this language in lexicographic order are $\{\text{aa}, \text{aaaa}, \text{aba}, \text{aaaa}, \text{abaa}, \text{aaba},\}$										
(b)	Design a DFSM for L={w w ∈ {0,1}*: w} DFSM. Show computation for w = 1010 accepting or rejecting configuration using The DFSM is designed to only accept alphabet is 0 or the second symbol is 1 dead state. After having read 101, the symbols and remains in the accepting state $\mathbf{Definition\ of\ DFSM\ M}$ $\mathbf{M} = (\mathbf{k}, \Sigma, \delta, \mathbf{s}, \mathbf{A})$ where $\mathbf{k} = \{q_0, q_1, q_2, q_3, q_4\}$ $\Sigma = \{0,1\}$ $\Delta = \{\ ((q_0, 0), q_3), ((q_0, 1), q_1), ((q_1, 0), q_2), ((q_1, 1), q_3), ((q_2, 0), q_3), ((q_2, 1), q_4), ((q_3, 0), q_3), ((q_3, 1), q_3), ((q_4, 0), q_4), ((q_4, 1), q_4)\}$	and w=110 extended treatment of the third extended treatment	on and state ansition fun rting with d symbol is ccepts any ransition T a q3 q2 q3 q3 q3 q3 q3 q3 q3 q3	whether it is ction. 101. If the f 0, it goes into combination Table b	irst to a	08]	CO1	L3			

A	= {	{a4}

Computation

 $(q_0, 1,010) \vdash (q_1,010) \vdash (q_2,10) \vdash (q_4,0) \vdash (q_4,\epsilon)$

Since $q_4 \subseteq A_M$ is an accepting state after all the input symbols have been read, it is an accepting configuration and w=1010 is accepted by DFSM M.

$$(q_0, 1100) \vdash (q_1, 110) \vdash (q_3, 10) \vdash (q_3, 0) \vdash (q_3, \varepsilon)$$

Since $q_3 \notin A_M$ and is not an accepting state after all the input symbols have been read, it is a rejecting configuration and w=1100 is not accepted by DFSM M.

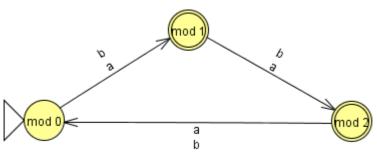
2 (a) Define the following with examples:

i) Alphabet ii) Cardinality of a Language

ANS : Alphabet denoted by Σ is a finite set. The members of Σ are called symbols or characters.

Eg. English Alphabet $\Sigma = \{a, b, c, ..., z\}$

Binary Alphabet $\Sigma = \{0,1\}$


Alphabet of digits $\Sigma = \{0,1,2,3,4,5,6,7,8,9\}$

Cardinality of a language: It represents the number of strings a language contains. The cardinality of a language is at least 0 or countably infinite.

Eg. L = $\{a^n: n \ge 1\}$ is countably infinite as there is a one-to-one correspondence between natural numbers and the set of integers in the language

$$f(n) = \{n \text{ if } n > = 1\}$$

(b) Design a DFSM for L= $\{w | w \in \{a,b\}^* : |w| \mod 3 \neq 0\}$. Show computation for w = aaba and w=bab and state whether it is an accepting or rejecting configuration using extended transition function.

The DFSM M is designed by 3 states, mod 0, mod 1 and mod 2.

Mod 0 is the state with the length of w is divisible by 3 and remainder is 0. This is not an accepting state.

Mod1 is the state with length of w as 1,4, 7,... where dividing by 3 yields remainder 1.

Mod 2 is the state with length of w as 2,5,8,... where dividing by 3 yields remainder 2.

Definition of DFSM M

 $M = (k, \Sigma, \delta, s, A)$ where

 $k = \{mod0, mod1, mod2\}$

 $\Sigma = \{a,b\}$

 $\delta = \{ ((\text{mod}0, a), \text{mod}1), ((\text{mod}0, b), \text{mod}1),$

((mod1, a), mod2), ((mod1, b), mod2),

((mod2, a), mod0), ((mod2, b), mod0),}

s = mod0

 $A = \{mod1, mod2\}$

δм	a	b
$\rightarrow mod0$	mod1	mod1
* mod 1	mod2	mod2
* <i>mod2</i>	mod0	mod0

[03]

L1 CO1

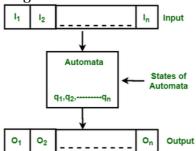
[07]

CO1

L3

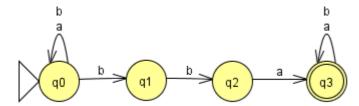
 $(\text{mod } 0, \mathbf{a} \text{aba}) \vdash (\text{mod } 1, \mathbf{a} \text{ba}) \vdash (\text{mod } 2, \mathbf{b} \text{a}) \vdash (\text{mod } 0, \mathbf{a}) \vdash (\text{mod } 1, \epsilon)$

Since $mod1 \subseteq A_M$ which is an accepting state after all the input symbols have been read, it is an accepting configuration and w=aaba is accepted by DFSM M.


 $(\text{mod }0, \mathbf{b}\text{ab}) \mid -(\text{mod }1, \mathbf{ab}) \mid -(\text{mod }2, \mathbf{b}) \mid -(\text{mod }0, \epsilon)$

Since $mod0 \notin A_M$ which is not an accepting state after all the input symbols have been read, it is a rejecting configuration and w=bab is not accepted by DFSM M.

3 (a) What is a finite automaton? Explain the operation of FA with a neat basic block diagram.


Finite Automaton is a computational device whose input is a string and whose output is one of two values that we can call Accept or Reject. It can be deterministic or non-deterministic. It is designed with a quintuple $M = (k, \Sigma, \delta, s, A)$ where

- k is the set of states.
- Σ is the input alphabet
- δ is the transition function in case of DFSM or Δ in case of NDFSM
- s is the start state
- A is the set of accepting states.

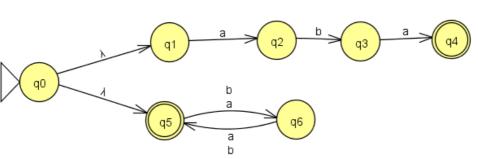
On reading an input symbol, a finite state machine may stay on a state or move to another state. If after all the input symbols in a string are read and the final state contains a state that belongs to A, then the srting is Accepted and the configuration is called the Accepting Configuration. Otherwise, we reject the string and it enters into a Rejecting configuration.

(b) Design an NDFSM for $L=\{w|w\in\{a,b\}^*: w \text{ contains the substring bba}\}$. Write the definition of NDFSM. Show computation for w=abba and w=aab and state whether it is an accepting or rejecting configuration using extended transition function.

The NDFSM stays in state q_0 on reading any a or b and guesses a substring bba by also moving to q_1 on b. After going to q_2 on another b, it moves to the final state q_3 . Once it reads a substring bba, it accepts any sequence of symbols following it on state q_3 .

$$M = (k, \Sigma, \Delta, s, A)$$
 where $k = \{q_0, q_1, q_2, q_3\}$

$$\Sigma = \{a,b\}$$

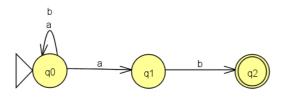

[03]

CO1 L2

[07]

CO1 L3

$S = q_0$ $A = \{q_3\}$	Transitio	n Table			
(13)	δ_M a	b			
	$\rightarrow q_0 \mid q_0$	$\{q_0, q_1\}$			
	$q_1 \Phi$	q_2			
	q_2 q_3	Φ			
	*q3 q3	q ₃			
	75 15	10			
mputation:					
q_0 , a bba) $\vdash \vdash (\{q_0, \mathbf{b}\})$	ba) $\vdash (\{q_0, q_1\}, \mathbf{b}a)$	$\vdash (\{q_0, q_1, q_2\}, \mathbf{a}) \vdash (\{q_0, q_3\}, \varepsilon)$			
· () 0 / (- 6	(1-1) \\(\frac{1}{2}\)(
		η ₃ }, ε) is an accepting configuration and			
_	is accepted by NDF				
	$(q_0, \mathbf{b}) \vdash (\{q_0, \}, \mathbf{b}$				
	s not accepted by NI	, q ₃ }, ε) is a rejecting configuration and			
ne string w —aab is	s not accepted by M	orow w.			
Differentiate DFSM	and NDFSM.		[04]	CO2	H
DFSM	<u> </u>	NDFSM			
	nction, δ that maps				
Uses a transition fu		Uses a transition relation Δ which is a			
Uses a transition fur a state to another	nction, δ that maps state based on the				
Uses a transition fur a state to another input symbol read.	state based on the	Uses a transition relation Δ which is a			
Uses a transition fur a state to another input symbol read. maps k x input sy	state based on the	Uses a transition relation Δ which is a			
Uses a transition fur a state to another input symbol read. maps k x input sy Where k is a state	state based on the mbol to k	Uses a transition relation Δ which is a finite subset of $(k{\times}(\Sigma \cup \{\epsilon\})){\times}k$			
Uses a transition fural state to another input symbol read. maps k x input symbol where k is a state. On each input symbol symbo	state based on the mbol to k	Uses a transition relation Δ which is a			
Uses a transition fur a state to another input symbol read. maps k x input sym Where k is a state On each input sym	state based on the mbol to k	Uses a transition relation Δ which is a finite subset of $(k\times(\Sigma\cup\{\epsilon\}))\times k$ There may or may not be a transition			
Uses a transition fural a state to another input symbol read. maps k x input symbol where k is a state. On each input symbol one transition	state based on the mbol to k bol there is exactly	Uses a transition relation Δ which is a finite subset of $(k\times(\Sigma\cup\{\epsilon\}))\times k$ There may or may not be a transition on a input symbol. There may be more			
Uses a transition fur a state to another input symbol read. maps k x input sym Where k is a state On each input sym one transition	state based on the mbol to k bol there is exactly	Uses a transition relation Δ which is a finite subset of $(k\times(\Sigma\cup\{\epsilon\}))\times k$ There may or may not be a transition on a input symbol. There may be more than one transition on an input symbol			
Uses a transition fural a state to another input symbol read. maps k x input symbols where k is a state. On each input symbols transition. There is only one coinput string	state based on the mbol to k bol there is exactly	Uses a transition relation Δ which is a finite subset of $(k\times(\Sigma\cup\{\epsilon\}))\times k$ There may or may not be a transition on a input symbol. There may be more than one transition on an input symbol There may be more than one			
Uses a transition fur a state to another input symbol read. maps k x input sym Where k is a state On each input sym one transition There is only one continut string After reading a string	state based on the mbol to k bol there is exactly configuration for an ang, if the final state	Uses a transition relation Δ which is a finite subset of $(k \times (\Sigma \cup \{\epsilon\})) \times k$ There may or may not be a transition on a input symbol. There may be more than one transition on an input symbol. There may be more than one configuration for an input string			
Uses a transition fural a state to another input symbol read. maps k x input symbol where k is a state. On each input symbol one transition. There is only one comput string	state based on the mbol to k bol there is exactly configuration for an ang, if the final state	Uses a transition relation Δ which is a finite subset of $(k \times (\Sigma \cup \{\epsilon\})) \times k$ There may or may not be a transition on a input symbol. There may be more than one transition on an input symbol There may be more than one configuration for an input string After reading a string, if one of the			
Uses a transition fural a state to another input symbol read. maps k x input symbol where k is a state. On each input symbol one transition. There is only one comput string. After reading a string is an accepting state.	state based on the mbol to k bol there is exactly configuration for an ang, if the final state	Uses a transition relation Δ which is a finite subset of $(k \times (\Sigma \cup \{\epsilon\})) \times k$ There may or may not be a transition on a input symbol. There may be more than one transition on an input symbol There may be more than one configuration for an input string After reading a string, if one of the states in the final configuration is			
Uses a transition fural a state to another input symbol read. maps k x input symbol read. Where k is a state On each input symone transition There is only one conjunct string After reading a string is an accepting state accepted	state based on the mbol to k bol there is exactly configuration for an ang, if the final state e, then the string is	Uses a transition relation Δ which is a finite subset of $(k \times (\Sigma \cup \{\epsilon\})) \times k$ There may or may not be a transition on a input symbol. There may be more than one transition on an input symbol. There may be more than one configuration for an input string. After reading a string, if one of the states in the final configuration is accepting state, the string is accepted by the machine. Easy to construct			
Uses a transition fural a state to another input symbol read. maps k x input symbol read. Where k is a state On each input symbol one transition There is only one comput string After reading a string an accepting state	state based on the mbol to k bol there is exactly onfiguration for an ang, if the final state e, then the string is	Uses a transition relation Δ which is a finite subset of $(k \times (\Sigma \cup \{\epsilon\})) \times k$ There may or may not be a transition on a input symbol. There may be more than one transition on an input symbol There may be more than one configuration for an input string After reading a string, if one of the states in the final configuration is accepting state, the string is accepted by the machine			
Uses a transition fural state to another input symbol read. maps k x input symbol read where k is a state. On each input symbol one transition. There is only one continuity string. After reading a string accepted.	state based on the mbol to k bol there is exactly configuration for an ang, if the final state e, then the string is ct stically	Uses a transition relation Δ which is a finite subset of $(k \times (\Sigma \cup \{\epsilon\})) \times k$ There may or may not be a transition on a input symbol. There may be more than one transition on an input symbol. There may be more than one configuration for an input string. After reading a string, if one of the states in the final configuration is accepting state, the string is accepted by the machine. Easy to construct			

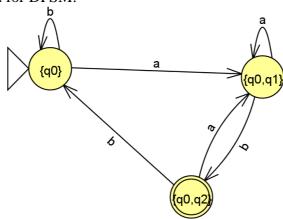


M =
$$(k, \Sigma, \Delta, s, A)$$
 where
k= $\{q_0, q_1, q_2, q_3, q_4, q_5, q_6\}$

4 (a)

$\Sigma = \{a,b\}$							
			$(q_1, a), q_2), ((q_2, b))$				
	$q_6), ((q$	$_{5},b),q_{6}),$	$((q_6,a),q_5),((q_6,$	$b),q_5)\}$			
$s=q_0$	~)						
$A = \{q_4, q_4, q_4, q_4, q_4, q_4, q_4, q_4, $		F. •.•					
4		Fransitio					
	Ф	<u></u> b	eps(q)				
$\rightarrow q_0$		Φ	$\{q_0, q_1, q_5\}$				
$egin{array}{c} q_1 \ q_2 \end{array}$	q_2 Φ	q_3					
q_3	q_4	Ф					
* q ₄	Ф	Φ					
* q ₅	q_6	q_6					
q_6	q_5	q_5					
Another A new st start state	FSM water state of bothes were	as design te was in the FSM rename	troduced and ϵ – 1's.	es to accept w is even. transition was used to connect to the s no two states with the same name			
			on languages.		[03]	CO1	L2
Length of $ \epsilon = 0$ $ aba = 3$ Number of $\#_a(ababb)$ Concatent by appending the system of the sys	of symbol $0 = 2$, the ation of ding to to ding to to ding to the entity from a constant $a \in \Sigma$. Where $a \in \Sigma$	g s, is denoted by sold in a good enumber of two strings or concatted as \mathbf{w}^R is the \mathbf{v}^R is the \mathbf{v}^R	noted by $ \mathbf{s} $ iven string, \mathbf{s} is represent of a's in string about \mathbf{s} and \mathbf{s} , is representation where \mathbf{s} and \mathbf{s} and each natural reverse of string where \mathbf{s} is \mathbf{s} .	sented using s t or st which is formed ϵ s $\epsilon = s$ ral number, i, w^i is defined as			
				alent DFSM and write its definition.	[07]	CO2	L3

(b) Convert the following NDFSM to an equivalent DFSM and write its definition. Show steps.


5 (a)

Transition Table										
⊿ <i>M</i>	a	b								
$\rightarrow q_0$	$\{q_0, q_1\}$	q_0								
q_1	Ф	q_2								
* q ₂	Φ	Φ								

			on Table
<i>∆ M</i> ′	a	b	
$\rightarrow q_0$	$\{q_0,q_1\}$	q_0	$\{q_0, q_1\}$ so compute transitions for them
$\{q_0,q_1\}$	$\{q_0, q_1\}$	$\{q_0,q_2\}$	$(\{q_0, q_1\}, \mathbf{a}) = \{q_0, a\} \cup \{q_1, a\} = \{q_0, q_1\} \cup \Phi = \{q_0, q_1\}$
			$(\{q_0, q_1\}, b) = \{q_0, b\} \cup \{q_1, b\} = \{q_0, q_1\} \cup \Phi = \{q_0, q_2\}$
			$\{q_0, q_1\}$ is a new state, so compute transitions
* {q ₀ , q ₂ }	$\{q_0,q_1\}$	q_0	$(\{q_0, q_2\}, \mathbf{a}) = \{q_0, a\} \cup \{q_2, a\} = \{q_0, q_1\} \cup \Phi = \{q_0, q_1\}$
			$(\{q_0, q_2\}, b) = \{q_0, b\} \cup \{q_2, b\} = \{q_0\} \cup \Phi = \{q_0\}$
			No new states, hence, stop computing.

The power set of the given NDFSM gives $2^3 = 8$ states. We start with the ϵ -closure of the start state. For each new state created, the transitions on a and b is computed. We stop when no new state is generated.

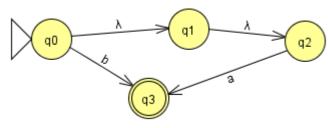
The accepting states in the DFSM is $\{q_0, q_2\}$ because $\{q_0, q_2\} \cap A$ of $ndfsm \neq \emptyset$ where A of given $ndfsm = \{q_2\}$ Transition diagram for DFSM:

The definition of the DFSM is as follows. $M' = (k', \Sigma, \delta, s', A')$ where

$$K' = \{\{q_0\}, \{q_0, q_1\}, \{q_0, q_2\}\}\$$

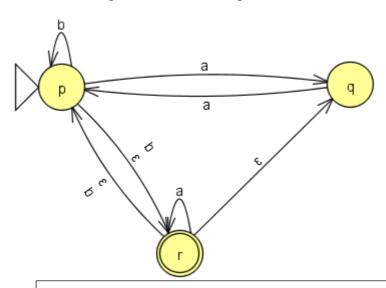
$$\begin{split} \Sigma &= \{a,b\} \\ \delta &= \{ \; ((\{q_0\},a),\{q_0,q_1\}), \; ((\{q_0\},b),\{q_0\}), \\ ((\{q_0,q_1\},a),\{q_0,q_1\}), \; ((\{q_0,q_1\},b),\{q_0,q_2\}), \\ ((\{q_0,q_2\},a),\{q_0,q_1\}), \; ((\{q_0,q_2\},b),\{q_0\}) \} \\ s' &= \{ \{q_0,q_2\} \; \} \end{split}$$

How to calculate the epsilon closure, ε -closure, eps(q) of a state q? eps(q) or ε -closure are the set of states reachable from q following 0 or more ε transitions.


 $eps(q) = \{p \in k: (q,w) | -*(p,w) \}$

where eps(q) is the closure of $\{q\}$ under the relation $\{(p,r)$: there is a transition $(p, \varepsilon, r) \in \Delta$

eps(q:state)=


- 1. $result = \{q\}$
- 2. While there exists some p∈result and q∉result, and some transition, (p, ε, r)∈ Δ do : Insert r into result.
- 3. Return result

For example,

 $eps(q0) = \{q0, q1, q2\}$

(b) Convert the following ε -NDFSM to an equivalent DFSM and write it's definition.

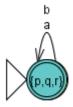
⊿ <i>M</i>	a	b	Eps(q)
$\rightarrow \rho$	{q}	{p,r}	{p,q,r}
q	{p}	Φ	{q}
* r	{r}	{p}	{p,q,r}
$M = (k, \Sigma,$	Δ , s,A) wh	nere	

Transition Table

 $k = \{p,q,r\}$

 $\Sigma = \{a,b\}$

[03]


CO2 L2

CO2

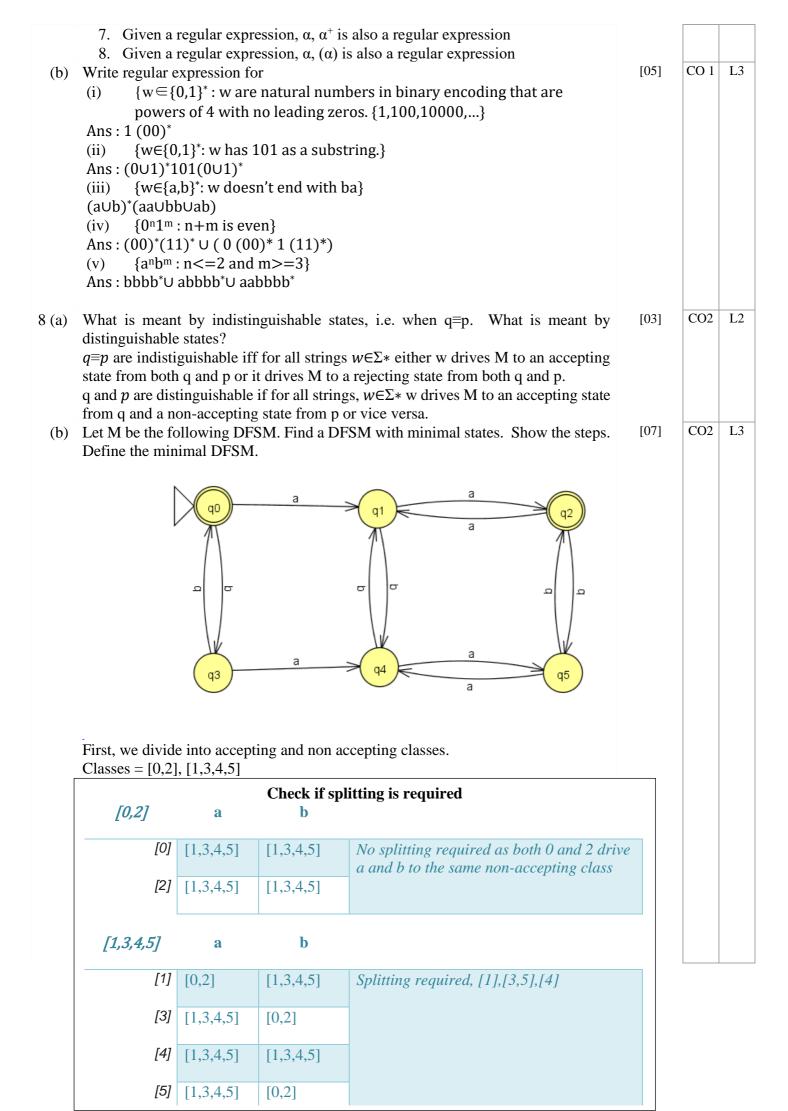
[07]

L3

Transition Table											
⊿ <i>M'</i>	a	b									
\rightarrow {p,q,r}	{ <i>p</i> , <i>q</i> , <i>r</i> }	{p,q,r}	$(\{p,q,r\},a) = (p,a) \cup (q,a) \cup (r,a)$ $= eps(q) \cup eps(p) \cup eps(r)$ $= \{q\} \cup \{p,q,r\} \cup \{p,q,r\}$ $= \{p,q,r\}$ $(\{p,q,r\},b) = (p,b) \cup (q,b) \cup (r,b)$ $= eps(p) \cup eps(r) \cup eps(p)$ $= \{p,q,r\} \cup \{p,q,r\} \cup \{p,q,r\}$ $= \{p,q,r\}$								

The definition of the DFSM is as follows.

$$M' = (k', \Sigma, \delta, s', A')$$
 where $K' = \{p, q, r\}\}$ $\Sigma = \{a,b\}$ $\delta = \{ ((\{p,q,r\}, a), \{p,q,r\}), ((\{p,q,r\}, b), \{p,q,r\})\}$ $s' = \{\{p,q,r\}\}$ $A' = \{\{p,q,r\}\}$

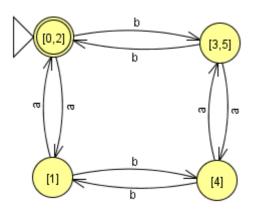

- 7 (a) What is a regular expression? What are the rules for forming regular expressions? A regular expression contains 2 kinds of symbols.
 - A set of symbols to which we attach particular meanings when they occur in regular expressions, Φ , \cup , ϵ , (.), * and +
 - An alphabet Σ which contains the symbols that regular expressions will match against.

A regular expression is a string that can be formed according to the following rules.

- 1. Φ is a regular expression
- 2. ε is a regular expression
- 3. Every element in Σ is a regular expression
- 4. Given two regular expressions, α and β , $\alpha\beta$ is also a regular expression
- 5. Given two regular expressions, α and β , $\alpha \cup \beta$ is also a regular expression
- 6. Given a regular expression, α , α^* is also a regular expression

[05]

CO 1 L1


Classes = [0,2],[1],[3,5],[4]

		Tra	nsition Table
[0,2]	a	b	
[0]	[1]	[3,5]	No splitting required as both 0 and 2 drive a to non-accepting class [1] and b to non-
[2]	[1] [3,5]		accepting class [3,5]
[3,5]	a	b	
[3]	[4]	[0,2]	No splitting required as both 3 and 5 drive a to non-accepting class [4] and b to
[5]	[4]	[0,2]	accepting class [0,2]

Classes = [0,2],[1],[3,5],[4]

The definition of the DFSM is as follows.

```
\begin{split} &M' = (k', \Sigma, \delta, s', A') \text{ where } \\ &K' = \{[0,2], [1], [3,5], [4]\} \\ &\Sigma = \{a,b\} \\ &\delta = \{ (([0,2],a), [1]), (([0,2],b), [3,5]), \\ &(([1],a), [0,2]), (([1],b), [4]), \\ &(([3,5],a), [4]), (([3,5],b), [0,2]), \\ &(([4],a), [3,5]), (([4],b), [1]) \\ &S' = [0,2] \\ &A' = \{[0,2]\} \end{split}
```


Transition Table										
$\delta_{M'}$	a	b								
→ * [0,2]	[1]	[3,5]								
[1]	[0,2]	[4]								
[3,5]	[4]	[0,2]								
[4]	[3,5]	[1]								

CO PO Mapping

	Course Outcomes	Modules	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	Acquire fundamental understanding of the core concepts in automata theory and Theory of Computation	1,2,3,4,	2	3	-	-	-	2	-	-	-	-	-	-	-	3		3
CO2	Learn how to translate between different models of Computation (e.g., Deterministic and Nondeterministic and Software models).	1,2	2	3	2	2	2	2	-	-	-	-	-	-	-	3	3	3
CO3	Design Grammars and Automata (recognizers) for different language classes and become knowledgeable about restricted models of Computation (Regular, Context Free) and their relative powers.	2,3	2	3	2	2	2	2	-	-	-	-	-	-	2	-	3	-
CO4	Develop skills in formal reasoning and reduction of a problem to a formal model, with an emphasis on semantic precision and conciseness.	3,4	2	3	2	2	-	2	-	-	-	-	-	-	2	2	3	3
CO5	Classify a problem with respect to different models of Computation	5	2	3	2	2	-	3	-	-	-	-	-	-	3	3	3	3

COGNITIVE LEVEL	REVISED BLOOMS TAXONOMY KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PF	CORRELATION LEVELS				
PO1	Engineering knowledge	PO7	Environment and sustainability	0	No Correlation

PO2	Problem analysis	PO8	Ethics	1	Slight/Low		
PO3	Design/development of solutions	PO9	Individual and team work	2	Moderate/ Medium		
PO4	Conduct investigations of complex problems	PO10	Communication	3	Substantial/ High		
PO5	Modern tool usage	PO11	Project management and finance				
PO6	The Engineer and society	PO12	Life-long learning				
PSO1	Develop applications using different stacks of web and programming technologies						
PSO2	Design and develop secure, parallel, distributed, networked, and digital systems						
PSO3	Apply software engineering methods to design, develop, test and manage software systems.						
PSO4	Develop intelligent applications for business and industry						