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Answer any FIVE FULL Questions MARKS CO RBT 

1 (a) Define the following with examples : 

i) String ii) Language 

Ans: String: A finite Sequence, possibly empty, of symbols drawn from some 

alphabet Σ.  Given any alphabet, the shortest string is ε. Σ* is the set of all possible 

strings over an alphabet Σ. 

Example: 

English Alphabet {a, b, c,…,z} Strings : {sat, laugh, happy} 

Binary Alphabet {0,1} Strings: {011, 111, 1000, 0110} 

Language: A language (finite/infinite) is a set of strings over a given alphabet, Σ. If 

there is more than one language, we will use ΣL to denote alphabets from which 

language L is formed. 

Eg.  

L = {w|∈{0,1}*:w begins and ends in a and |w| >=2} 

Strings that belong to this language in lexicographic order are {aa,aaa, aba, aaaa, 

abaa, aaba,…} 

 

[02] CO1 L1 

   (b) Design a DFSM for L={w| w∈{0,1}*: w begins with 101}. Write the definition of 

DFSM. Show computation for w = 1010 and w=1100 and state whether it is an 

accepting or rejecting configuration using extended transition function. 

 
The DFSM is designed to only accept strings starting with 101. If the first 
alphabet is 0 or the second symbol is 1 or the third symbol is 0, it goes into a 
dead state.  After having read 101, the DFSM accepts any combination of 
symbols and remains in the accepting state. 
 
Definition of DFSM M 
M = (k,Σ, δ, s,A) where 
k= {q0, q1, q2, q3, q4} 
Σ = {0,1} 

Δ = { ((q0, 0), q3), ((q0, 1), q1), 
((q1, 0), q2), ((q1, 1), q3), 
((q2, 0), q3), ((q2, 1), q4), 
((q3, 0), q3), ((q3, 1), q3), 
((q4, 0), q4), ((q4, 1), q4)} 
s = q0 

[08] CO1 L3 

 

 

Transition Table 

δM a b 
→ q0 q3 q1 

 q1 q2 q3 

 q2 q3 q4 

q3 q3 q3 
* q4 q4 q4 

 



 

A = {q4} 
Computation 
(q0, 1,010) |—   (q1,010) |—   (q2,10) |—   (q4,0) |—   (q4, ε) 
Since q4∈AM is an accepting state after all the input symbols have been read, 
it is an accepting configuration and w=1010 is accepted by DFSM M. 
 
(q0, 1100) |—   (q1,110) |—   (q3,10) |—   (q3,0) |—   (q3, ε) 
Since q3∉ AM and is not an accepting state after all the input symbols have been 
read, it is a rejecting configuration and w=1100 is not accepted by DFSM M. 
 

2 (a) Define the following with examples : 

i) Alphabet  ii)Cardinality of a Language 

ANS : Alphabet denoted by Σ is a finite set.  The members of Σ are called symbols 

or characters. 

Eg. English Alphabet Σ= {a, b, c,…,z}  

Binary Alphabet Σ= {0,1} 

Alphabet of digits Σ = {0,1,2,3,4,5,6,7,8,9} 

Cardinality of a language: It represents the number of strings a language contains.  

The cardinality of a language is at least 0 or countably infinite. 

Eg. L = {an: n>=1} is countably infinite as there is a one-to-one correspondence 

between natural numbers and the set of integers in the language 

f(n) =  {n if n>=1} 
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   (b)  Design a DFSM for L={w| w∈{a,b}*: |w| mod 3 ≠ 0}. Show computation for w = 

aaba and w=bab and state whether it is an accepting or rejecting configuration 

using extended transition function. 

 
The DFSM M is designed by 3 states, mod 0, mod 1and mod 2. 

Mod 0 is the state with the length of w is divisible by 3 and remainder is 0.  This 

is not an accepting state. 

Mod1 is the state with length of w as 1,4, 7,… where dividing by 3 yields 

remainder 1. 

Mod 2 is the state with length of w as 2,5,8,… where dividing by 3 yields 

remainder 2. 

Definition of DFSM M 
M = (k,Σ, δ, s,A) where 
k= {mod0,mod1,mod2} 
Σ = {a,b} 

δ = { ((mod0, a), mod1), ((mod0, b), mod1), 
((mod1, a), mod2), ((mod1, b), mod2), 
((mod2, a), mod0), ((mod2, b), mod0),} 
s = mod0 

A = {mod1,mod2} 
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Transition Table 

δM a b 

→ mod0 mod1 mod1 

* mod1 mod2 mod2 

* mod2 mod0 mod0 

 



 

 

(mod0, aaba) |—   (mod1,aba) |—   (mod2,ba) |—   (mod0,a) |—   (mod1, ε) 
Since mod1 ∈ AM which is an accepting state after all the input symbols have 
been read, it is an accepting configuration and w=aaba is accepted by DFSM 
M. 
(mod0, bab) |—   (mod1,ab) |—   (mod2,b) |—   (mod0, ε) 
Since mod0 ∉ AM which is not an accepting state after all the input symbols have 
been read, it is a rejecting configuration and w=bab is not accepted by DFSM 
M. 

3 (a)  What is a finite automaton? Explain the operation of FA with a neat basic block 

diagram. 

Finite Automaton is a computational device whose input is a string and whose 

output is one of two values that we can call Accept or Reject. It can be deterministic 

or non-deterministic.  It is designed with a quintuple M = (k,Σ, δ, s, A) where 
• k is the set of states. 

• Σ is the input alphabet 

• δ is the transition function in case of DFSM or Δ in case of NDFSM 

• s is the start state 

• A is the set of accepting states. 

 
On reading an input symbol, a finite state machine may stay on a state or move 
to another state.  If after all the input symbols in a string are read and the final 
state contains a state that belongs to A, then the srting is Accepted and the 
configuration is called the Accepting Configuration. Otherwise, we reject the 
string and it enters into a Rejecting configuration. 
 

[03] CO1 L2 

   (b) Design an NDFSM for L={w| w∈{a,b}*: w contains the substring bba}.  Write the 

definition of NDFSM.  Show computation for w = abba and w = aab and state 

whether it is an accepting or rejecting configuration using extended transition 

function. 

 
The NDFSM stays in state q0 on reading any a or b and guesses a substring bba by 

also moving to q1 on b.  After going to q2 on another b, it moves to the final state 

q3. Once it reads a substring bba, it accepts any sequence of symbols following it 

on state q3. 

M = (k,Σ, Δ, s,A) where 
k= {𝑞0, 𝑞1, 𝑞2, 𝑞3} 
Σ = {a,b} 

[07] CO1 L3 



 

Δ = { (𝑞0, 𝑎), {𝑞0}),  ((𝑞0, 𝑏), {𝑞0, 𝑞1), ((𝑞1, 𝑏), 𝑞2), ((𝑞2, 𝑎), 𝑞3), 
((𝑞3, 𝑎), 𝑞3), ((𝑞3, 𝑏), 𝑞3)} 
s=𝑞0 
A = {𝑞3} 
 
 
 
 
 
 

Computation: 
(q0, abba) |—   ({q0,bba) |—   ({q0, q1},ba) |—   ({q0, q1, q2},a) |—   ({q0, q3}, ε) 

 

Since {q0, q3}∩A≠Φ, (q0, abba) |—   *({q0, q3}, ε) is an accepting configuration and 
the string w = abba is accepted by NDFSM M. 
(q0, aab) |—   ({q0}, ab)|—   ({q0,},b) |—   ({q0, q1}, ε) 
Since {q0, q1}∩A=Φ, (q0, abba) |—   *({q0, q3}, ε) is a rejecting configuration and 
the string w =aab is not accepted by NDFSM M. 
 

 

4 (a) Differentiate DFSM and NDFSM. 

DFSM NDFSM 

Uses a transition function, δ  that maps 

a state to another state based on the 

input symbol read. 

 maps k x input symbol to k 
Where k is a state 

Uses a transition relation Δ which is a 

finite subset of (k×(Σ∪{ε}))×k 

On each input symbol there is exactly 

one transition 

There may or may not be a transition 

on a input symbol.  There may be more 

than one transition on an input symbol 

There is only one configuration for an 

input string 

There may be more than one 

configuration for an input string 

After reading a string, if the final state 

is an accepting state, then the  string is 

accepted 

After reading a string, if one of the 

states in the final configuration is 

accepting state, the string is accepted 

by the machine 

Difficult to construct Easy to construct 

Behaved deterministically Guesses the next step 

ε - transitions are not allowed ε- transitions are allowed 
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   (b)  Design an NDFSM for L = {w| w∈{a,b}*: w= aba or |w| is even.  Give definition 

and explain how the NDFSM was designed 

 
M = (k,Σ, Δ, s,A) where 
k= {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6} 

 

[06] 

CO2 L3 

Transition Table 

δM a b 
→ q0 q0 {q0, q1} 

 q1 Φ q2 

 q2 q3 Φ 

*q3 q3 q3 
 



 

Σ = {a,b} 

Δ = { (𝑞0, 𝜀), {𝑞1, 𝑞5}),  ((𝑞1, 𝑎), 𝑞2), ((𝑞2, 𝑏), 𝑞3), ((𝑞3, 𝑎), 𝑞4), 
((𝑞5, 𝑎), 𝑞6), ((𝑞5, 𝑏), 𝑞6), ((𝑞6, 𝑎), 𝑞5), ((𝑞6, 𝑏), 𝑞5)} 
s=𝑞0 
A = {𝑞4, 𝑞5} 
 
 
 
 
 
 
 
 
 
 
 
First an FSM for w= aba was designed by using 3 states. 
Another FSM was designed using two states to accept |w| is even. 
A new start state was introduced and ε – transition was used to connect to the 

start state of both the FSM’s. 

The states were renamed such that there is no two states with the same name 
in the new FSM. 

5 (a) Explain various functions on languages. 

Length of a string s, is denoted by  |s|  

|ε| = 0 

|aba| = 3 

Number of symbols in a given string, s  is represented by #c(s)  

#a(ababb) = 2, the number of a’s in string ababb is 2 

Concatenation of two strings s and t, is represented using s||t or st which is formed 

by appending t to s. 

Eg. x=good, y=bye 

xy=goodbye 

ε is the identity for concatenation where ε s = s ε = s 

Replication : For each string w and each natural number, i, wi is defined as  

w0=ε 
a3 = aaa 
(bye)2=byebye 
String Reversal : wR is the reverse of string w. 
If |w|=0, wR=w=ε 
If |w|>0, ∃𝑎 ∈ ∑(∃𝑢 𝜖 ∑ (𝑤 = 𝑢𝑎))∗ , i.e. last character of w is a, wR =auR  

[03] CO1 L2 

   (b)  Convert the following NDFSM to an equivalent DFSM and write its definition. 

Show steps. 
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Transition Table 

Δ  M a b eps(q) 

→ 𝑞0 Φ Φ {𝑞0, 𝑞1, 𝑞5} 

𝑞1 𝑞2 Φ  

𝑞2 Φ 𝑞3  

𝑞3 𝑞4 Φ  

∗ 𝑞4 Φ Φ  

∗ 𝑞5 𝑞6 𝑞6  

𝑞6 𝑞5 𝑞5  

 

Transition Table 

Δ  M a b 

→ 𝑞0 {𝑞0, 𝑞1} 𝑞0 

𝑞1 Φ 𝑞2 

∗  𝑞2 Φ Φ 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The power set of the given NDFSM gives 23 = 8 states.  We start with the ε-closure 

of the start state.  For each new state created, the transitions on a and b is computed. 

We stop when no new state is generated. 

 

The accepting states in the DFSM is {𝑞0, 𝑞2}  because  
{𝑞0, 𝑞2}  ∩ 𝐴 𝑜𝑓 𝑛𝑑𝑓𝑠𝑚 ≠ ∅ where A of given ndfsm = {q2} 

Transition diagram for DFSM: 

 
The definition of the DFSM is as follows. 

M’ = (k’,Σ, δ, s’,A’) where 
K’= {{𝑞0}, {𝑞0, 𝑞1}, {𝑞0, 𝑞2}} 

Transition Table 

Δ  M’ a b  

→ 𝑞0 {𝑞0, 𝑞1} 𝑞0 {𝑞0, 𝑞1} so compute transitions for 

them 

{𝑞0, 𝑞1} {𝑞0, 𝑞1} {𝑞0, 𝑞2} ({𝑞0, 𝑞1}, a) =  {𝑞0, 𝑎} ∪ {𝑞1, 𝑎) = 
{𝑞0, 𝑞1} ∪ Φ =  {𝑞0, 𝑞1}  

 

({𝑞0, 𝑞1}, b) =  {𝑞0, 𝑏} ∪ {𝑞1, 𝑏) = 
{𝑞0, 𝑞1} ∪ Φ =  {𝑞0, 𝑞2}  

 

{𝑞0, 𝑞1} is a new state, so compute 

transitions 

∗ {𝑞0, 𝑞2} {𝑞0, 𝑞1} 𝑞0 ({𝑞0, 𝑞2}, a) =  {𝑞0, 𝑎} ∪ {𝑞2, 𝑎) = 
{𝑞0, 𝑞1} ∪ Φ =  {𝑞0, 𝑞1}  

 

({𝑞0, 𝑞2}, b) =  {𝑞0, 𝑏} ∪ {𝑞2, 𝑏) = 
{𝑞0} ∪ Φ =  {𝑞0}  

 

No new states, hence, stop 

computing. 

 



 

Σ = {a,b} 
δ = { (({q0}, a), {𝑞0, 𝑞1}), (({q0}, b), {𝑞0}), 
(({q0, q1}, a), {𝑞0, 𝑞1}), (({q0, q1}, b), {q0, q2}), 
(({q0, q2}, a), {𝑞0, 𝑞1}), (({q0, q2}, b), {q0})} 
s’={q0} 
A’ = { {q0, q2} } 

 

 

6 (a) How to calculate the epsilon closure, ε-closure, eps(q) of a state q? 

eps(q) or ε-closure are the set of states reachable from q following 0 or more ε-

transitions. 

eps(q) = {p∈k: (q,w) |—  * (p,w) 
where eps(q) is the closure of {q} under the relation {(p,r): there is a transition 
(p, ε, r)∈ Δ} 
eps(q:state)= 
1. result = {q} 
2. While there exists some p∈result and q∉result, and some transition, (p, ε, 

r)∈Δ do : Insert r into result. 
3. Return result 

For example,  

 
eps(q0) = {q0, q1, q2} 
 
 

[03] CO2 L2 

   (b) Convert the following ε-NDFSM to an equivalent DFSM and write it’s definition. 
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Transition Table 

Δ  M a b Eps(q) 

→ p {𝑞} {p,r} {p,q,r} 

q {p} Φ {q} 

∗  𝑟 {r} {p} {p,q,r} 

M = (k,Σ, Δ, s,A) where 
k= {p,q,r} 
Σ = {a,b} 

s =p 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The definition of the DFSM is as follows. 

M’ = (k’,Σ, δ, s’,A’) where 
K’= {𝑝, 𝑞, 𝑟}} 
Σ = {a,b} 
δ = { (({p,q,r}, a), {𝑝, 𝑞, 𝑟}), (({p,q,r}, b), {𝑝, 𝑞, 𝑟})} 
s’={{p,q,r}} 
A’ = { {p,q,r}} 

 

 

7 (a) What is a regular expression? What are the rules for forming regular expressions? 

A regular expression contains 2 kinds of symbols. 

• A set of symbols to which we attach particular meanings when they occur 

in regular expressions, Φ, ∪, ε, (.), * and + 

• An alphabet Σ which contains the symbols that regular expressions will 

match against. 

A regular expression is a string that can be formed according to the following rules. 

1. Φ is a regular expression 

2. ε is a regular expression 

3. Every element in Σ is a regular expression 

4. Given two regular expressions, α and ß, αß is also a regular expression 

5. Given two regular expressions, α and ß, α∪ß is also a regular expression 

6. Given a regular expression, α, α* is also a regular expression 

[05] CO 1 L1 

Transition Table 

Δ  M’ a b  

→ {p,q,r} {𝑝, 𝑞, 𝑟} {p,q,r} ({𝑝, 𝑞, 𝑟}, 𝑎) = (𝑝, 𝑎) ∪ (𝑞, 𝑎) ∪ (𝑟, 𝑎)
= 𝑒𝑝𝑠(𝑞) ∪ 𝑒𝑝𝑠(𝑝) ∪ 𝑒𝑝𝑠(𝑟)
= {𝑞} ∪ {𝑝, 𝑞, 𝑟} ∪ {𝑝, 𝑞, 𝑟}
= {𝑝, 𝑞, 𝑟} 

({𝑝, 𝑞, 𝑟}, 𝑏) = (𝑝, 𝑏) ∪ (𝑞, 𝑏) ∪ (𝑟, 𝑏)
= 𝑒𝑝𝑠(𝑝) ∪ 𝑒𝑝𝑠(𝑟) ∪ 𝑒𝑝𝑠(𝑝)
= {𝑝, 𝑞, 𝑟} ∪ {𝑝, 𝑞, 𝑟} ∪ {𝑝, 𝑞, 𝑟}
= {𝑝, 𝑞, 𝑟} 

 



 

7. Given a regular expression, α, α+ is also a regular expression 

8. Given a regular expression, α, (α) is also a regular expression 

   (b)  Write regular expression for 

(i) {w∈{0,1}* : w are natural numbers in binary encoding that are 
powers of 4 with no leading zeros. {1,100,10000,…} 

Ans : 1 (00)* 

(ii) {w∈{0,1}*: w has 101 as a substring.} 
Ans : (0∪1)*101(0∪1)* 
(iii) {w∈{a,b}*: w doesn’t end with ba} 
(a∪b)*(aa∪bb∪ab) 
(iv) {0n1m : n+m is even} 
Ans : (00)*(11)* ∪ ( 0 (00)* 1 (11)*) 

(v) {anbm : n<=2 and m>=3} 
Ans : bbbb*∪ abbbb*∪ aabbbb* 

 

[05] CO 1 L3 

8 (a)  What is meant by indistinguishable states, i.e. when q≡p.  What is meant by 

distinguishable states?  

𝑞≡𝑝 are indistiguishable iff for all strings 𝑤∈Σ∗ either w drives M to an accepting 

state from both q and p or it drives M to a rejecting state from both q and p. 

q and 𝑝 are distinguishable if for all strings, 𝑤∈Σ∗ w drives M to an accepting state 

from q and a non-accepting state from p or vice versa.  

[03] CO2 L2 

   (b) Let M be the following DFSM. Find a DFSM with minimal states.  Show the steps. 

Define the minimal DFSM. 

 

 
First, we divide into accepting and non accepting classes. 

Classes = [0,2], [1,3,4,5] 
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Check if splitting is required 

[0,2] a b  

[0] [1,3,4,5] [1,3,4,5] No splitting required as both 0 and 2 drive 

a and b to the same non-accepting class 
[2] [1,3,4,5] [1,3,4,5] 

 

[1,3,4,5] a b  

[1] [0,2] [1,3,4,5] Splitting required, [1],[3,5],[4] 

[3] [1,3,4,5] [0,2] 

[4] [1,3,4,5] [1,3,4,5] 

[5] [1,3,4,5] [0,2] 

 



 

 

 

 

 

 

 

 

Classes = [0,2],[1],[3,5],[4] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Classes = [0,2],[1],[3,5],[4] 

 

The definition of the DFSM is as follows. 

M’ = (k’,Σ, δ, s’,A’) where 
K’= {[0,2],[1],[3,5],[4]} 
Σ = {a,b} 
δ = { (([0,2], a),[1]), (([0,2], b), [3,5]), 
(([1], a), [0,2]), (([1], b), [4]), 
(([3,5], a), [4]), (([3,5], b), [0,2]), 
(([4], a), [3,5]), (([4], b), [1]) 
} 
s’=[0,2] 
A’ = {[0,2]} 

 
 

 

 

 

Transition Table 

[0,2] a b  

[0] [1] [3,5] No splitting required as both 0 and 2 drive 

a to non-accepting class [1] and b to non-

accepting class [3,5] [2] [1] [3,5] 

 

[3,5] a b  

[3] [4] [0,2] No splitting required as both 3 and 5 drive 

a to non-accepting class [4] and b to 

accepting class [0,2] [5] [4] [0,2] 

 

Transition Table 

δM’ a b 
→*[0,2] [1] [3,5] 

[1] [0,2] [4] 

[3,5] [4] [0,2] 

[4] [3,5] [1] 
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CO1 

Acquire fundamental understanding 

of the core concepts in automata 

theory and Theory of Computation 

 

1,2,3,4,

5 

2 3 - - - 2 - - - - - - - 3  3 

CO2 

Learn how to translate between 

different models of Computation 

(e.g., Deterministic and Non-

deterministic and Software models). 

 

1,2 

2 3 2 2 2 2 - - - - - - - 3 3 3 

CO3 

Design Grammars and Automata 

(recognizers) for different language 

classes and become knowledgeable 

about restricted models of 

Computation (Regular, Context 

Free) and their relative powers. 

 

2,3 

2 3 2 2 2 2 - - - - - - 2 - 3 - 

CO4 

Develop skills in formal reasoning 

and reduction of a problem to a 

formal model, with an       emphasis 

on semantic precision and 

conciseness. 

 

3,4 

2 3 2 2 - 2 - - - - - - 2 2 3 3 

CO5 

Classify a problem with respect to 

different models of Computation 

 

5 
2 3 2 2 - 3 - - - - - - 3 3 3 3 

 

 

COGNITIVE 

LEVEL 
REVISED BLOOMS TAXONOMY KEYWORDS 

L1 
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, 

when, where, etc.  

L2 
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, 

discuss, extend  

L3 
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, 

change, classify, experiment, discover.  

L4 
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, 

infer.  

L5 
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, 

discriminate, support, conclude, compare, summarize.  

 

 

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO) 
CORRELATION 

LEVELS 

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation 



 

PO2 Problem analysis PO8 Ethics 1 Slight/Low 

PO3 Design/development of solutions PO9 Individual and team work 2 
Moderate/ 

Medium 

PO4 
Conduct investigations of 

complex problems 
PO10 Communication 3 

Substantial/ 

High 

PO5 Modern tool usage PO11 Project management and finance  

PO6 The Engineer and society PO12 Life-long learning  

PSO1 Develop applications using different stacks of web and programming technologies 

PSO2 Design and develop secure, parallel,  distributed, networked, and digital systems 

PSO3 Apply software engineering methods to design, develop, test and manage software systems. 

PSO4 Develop  intelligent applications for business and industry  

 

 


