

USN

Internal Assessment Test 1 – Nov 2021

Sub: Automata Theory and Computability Sub Code: 18CS54 Branch: CSE

Date: 13/11/2021 Duration: 90 mins Max Marks: 50 Sem / Sec: 5 A,B,C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Define the following with examples :

i) String ii) Language

Ans: String: A finite Sequence, possibly empty, of symbols drawn from some

alphabet Σ. Given any alphabet, the shortest string is ε. Σ* is the set of all possible

strings over an alphabet Σ.

Example:

English Alphabet {a, b, c,…,z} Strings : {sat, laugh, happy}

Binary Alphabet {0,1} Strings: {011, 111, 1000, 0110}

Language: A language (finite/infinite) is a set of strings over a given alphabet, Σ. If

there is more than one language, we will use ΣL to denote alphabets from which

language L is formed.

Eg.

L = {w|∈{0,1}*:w begins and ends in a and |w| >=2}

Strings that belong to this language in lexicographic order are {aa,aaa, aba, aaaa,

abaa, aaba,…}

[02] CO1 L1

 (b) Design a DFSM for L={w| w∈{0,1}*: w begins with 101}. Write the definition of

DFSM. Show computation for w = 1010 and w=1100 and state whether it is an

accepting or rejecting configuration using extended transition function.

The DFSM is designed to only accept strings starting with 101. If the first
alphabet is 0 or the second symbol is 1 or the third symbol is 0, it goes into a
dead state. After having read 101, the DFSM accepts any combination of
symbols and remains in the accepting state.

Definition of DFSM M
M = (k,Σ, δ, s,A) where
k= {q0, q1, q2, q3, q4}
Σ = {0,1}

Δ = { ((q0, 0), q3), ((q0, 1), q1),
((q1, 0), q2), ((q1, 1), q3),
((q2, 0), q3), ((q2, 1), q4),
((q3, 0), q3), ((q3, 1), q3),
((q4, 0), q4), ((q4, 1), q4)}
s = q0

[08] CO1 L3

Transition Table

δM a b
→ q0 q3 q1

 q1 q2 q3

 q2 q3 q4

q3 q3 q3
* q4 q4 q4

A = {q4}
Computation
(q0, 1,010) |— (q1,010) |— (q2,10) |— (q4,0) |— (q4, ε)
Since q4∈AM is an accepting state after all the input symbols have been read,
it is an accepting configuration and w=1010 is accepted by DFSM M.

(q0, 1100) |— (q1,110) |— (q3,10) |— (q3,0) |— (q3, ε)
Since q3∉ AM and is not an accepting state after all the input symbols have been
read, it is a rejecting configuration and w=1100 is not accepted by DFSM M.

2 (a) Define the following with examples :

i) Alphabet ii)Cardinality of a Language

ANS : Alphabet denoted by Σ is a finite set. The members of Σ are called symbols

or characters.

Eg. English Alphabet Σ= {a, b, c,…,z}

Binary Alphabet Σ= {0,1}

Alphabet of digits Σ = {0,1,2,3,4,5,6,7,8,9}

Cardinality of a language: It represents the number of strings a language contains.

The cardinality of a language is at least 0 or countably infinite.

Eg. L = {an: n>=1} is countably infinite as there is a one-to-one correspondence

between natural numbers and the set of integers in the language

f(n) = {n if n>=1}

[03] CO1 L1

 (b) Design a DFSM for L={w| w∈{a,b}*: |w| mod 3 ≠ 0}. Show computation for w =

aaba and w=bab and state whether it is an accepting or rejecting configuration

using extended transition function.

The DFSM M is designed by 3 states, mod 0, mod 1and mod 2.

Mod 0 is the state with the length of w is divisible by 3 and remainder is 0. This

is not an accepting state.

Mod1 is the state with length of w as 1,4, 7,… where dividing by 3 yields

remainder 1.

Mod 2 is the state with length of w as 2,5,8,… where dividing by 3 yields

remainder 2.

Definition of DFSM M
M = (k,Σ, δ, s,A) where
k= {mod0,mod1,mod2}
Σ = {a,b}

δ = { ((mod0, a), mod1), ((mod0, b), mod1),
((mod1, a), mod2), ((mod1, b), mod2),
((mod2, a), mod0), ((mod2, b), mod0),}
s = mod0

A = {mod1,mod2}

[07] CO1 L3

Transition Table

δM a b

→ mod0 mod1 mod1

* mod1 mod2 mod2

* mod2 mod0 mod0

(mod0, aaba) |— (mod1,aba) |— (mod2,ba) |— (mod0,a) |— (mod1, ε)
Since mod1 ∈ AM which is an accepting state after all the input symbols have
been read, it is an accepting configuration and w=aaba is accepted by DFSM
M.
(mod0, bab) |— (mod1,ab) |— (mod2,b) |— (mod0, ε)
Since mod0 ∉ AM which is not an accepting state after all the input symbols have
been read, it is a rejecting configuration and w=bab is not accepted by DFSM
M.

3 (a) What is a finite automaton? Explain the operation of FA with a neat basic block

diagram.

Finite Automaton is a computational device whose input is a string and whose

output is one of two values that we can call Accept or Reject. It can be deterministic

or non-deterministic. It is designed with a quintuple M = (k,Σ, δ, s, A) where
• k is the set of states.

• Σ is the input alphabet

• δ is the transition function in case of DFSM or Δ in case of NDFSM

• s is the start state

• A is the set of accepting states.

On reading an input symbol, a finite state machine may stay on a state or move
to another state. If after all the input symbols in a string are read and the final
state contains a state that belongs to A, then the srting is Accepted and the
configuration is called the Accepting Configuration. Otherwise, we reject the
string and it enters into a Rejecting configuration.

[03] CO1 L2

 (b) Design an NDFSM for L={w| w∈{a,b}*: w contains the substring bba}. Write the

definition of NDFSM. Show computation for w = abba and w = aab and state

whether it is an accepting or rejecting configuration using extended transition

function.

The NDFSM stays in state q0 on reading any a or b and guesses a substring bba by

also moving to q1 on b. After going to q2 on another b, it moves to the final state

q3. Once it reads a substring bba, it accepts any sequence of symbols following it

on state q3.

M = (k,Σ, Δ, s,A) where
k= {𝑞0, 𝑞1, 𝑞2, 𝑞3}
Σ = {a,b}

[07] CO1 L3

Δ = { (𝑞0, 𝑎), {𝑞0}), ((𝑞0, 𝑏), {𝑞0, 𝑞1), ((𝑞1, 𝑏), 𝑞2), ((𝑞2, 𝑎), 𝑞3),
((𝑞3, 𝑎), 𝑞3), ((𝑞3, 𝑏), 𝑞3)}
s=𝑞0
A = {𝑞3}

Computation:
(q0, abba) |— ({q0,bba) |— ({q0, q1},ba) |— ({q0, q1, q2},a) |— ({q0, q3}, ε)

Since {q0, q3}∩A≠Φ, (q0, abba) |— *({q0, q3}, ε) is an accepting configuration and
the string w = abba is accepted by NDFSM M.
(q0, aab) |— ({q0}, ab)|— ({q0,},b) |— ({q0, q1}, ε)
Since {q0, q1}∩A=Φ, (q0, abba) |— *({q0, q3}, ε) is a rejecting configuration and
the string w =aab is not accepted by NDFSM M.

4 (a) Differentiate DFSM and NDFSM.

DFSM NDFSM

Uses a transition function, δ that maps

a state to another state based on the

input symbol read.

 maps k x input symbol to k
Where k is a state

Uses a transition relation Δ which is a

finite subset of (k×(Σ∪{ε}))×k

On each input symbol there is exactly

one transition

There may or may not be a transition

on a input symbol. There may be more

than one transition on an input symbol

There is only one configuration for an

input string

There may be more than one

configuration for an input string

After reading a string, if the final state

is an accepting state, then the string is

accepted

After reading a string, if one of the

states in the final configuration is

accepting state, the string is accepted

by the machine

Difficult to construct Easy to construct

Behaved deterministically Guesses the next step

ε - transitions are not allowed ε- transitions are allowed

[04] CO2 L3

 (b) Design an NDFSM for L = {w| w∈{a,b}*: w= aba or |w| is even. Give definition

and explain how the NDFSM was designed

M = (k,Σ, Δ, s,A) where
k= {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞5, 𝑞6}

[06]

CO2 L3

Transition Table

δM a b
→ q0 q0 {q0, q1}

 q1 Φ q2

 q2 q3 Φ

*q3 q3 q3

Σ = {a,b}

Δ = { (𝑞0, 𝜀), {𝑞1, 𝑞5}), ((𝑞1, 𝑎), 𝑞2), ((𝑞2, 𝑏), 𝑞3), ((𝑞3, 𝑎), 𝑞4),
((𝑞5, 𝑎), 𝑞6), ((𝑞5, 𝑏), 𝑞6), ((𝑞6, 𝑎), 𝑞5), ((𝑞6, 𝑏), 𝑞5)}
s=𝑞0
A = {𝑞4, 𝑞5}

First an FSM for w= aba was designed by using 3 states.
Another FSM was designed using two states to accept |w| is even.
A new start state was introduced and ε – transition was used to connect to the

start state of both the FSM’s.

The states were renamed such that there is no two states with the same name
in the new FSM.

5 (a) Explain various functions on languages.

Length of a string s, is denoted by |s|

|ε| = 0

|aba| = 3

Number of symbols in a given string, s is represented by #c(s)

#a(ababb) = 2, the number of a’s in string ababb is 2

Concatenation of two strings s and t, is represented using s||t or st which is formed

by appending t to s.

Eg. x=good, y=bye

xy=goodbye

ε is the identity for concatenation where ε s = s ε = s

Replication : For each string w and each natural number, i, wi is defined as

w0=ε
a3 = aaa
(bye)2=byebye
String Reversal : wR is the reverse of string w.
If |w|=0, wR=w=ε
If |w|>0, ∃𝑎 ∈ ∑(∃𝑢 𝜖 ∑ (𝑤 = 𝑢𝑎))∗ , i.e. last character of w is a, wR =auR

[03] CO1 L2

 (b) Convert the following NDFSM to an equivalent DFSM and write its definition.

Show steps.

[07] CO2 L3

Transition Table

Δ M a b eps(q)

→ 𝑞0 Φ Φ {𝑞0, 𝑞1, 𝑞5}

𝑞1 𝑞2 Φ

𝑞2 Φ 𝑞3

𝑞3 𝑞4 Φ

∗ 𝑞4 Φ Φ

∗ 𝑞5 𝑞6 𝑞6

𝑞6 𝑞5 𝑞5

Transition Table

Δ M a b

→ 𝑞0 {𝑞0, 𝑞1} 𝑞0

𝑞1 Φ 𝑞2

∗ 𝑞2 Φ Φ

The power set of the given NDFSM gives 23 = 8 states. We start with the ε-closure

of the start state. For each new state created, the transitions on a and b is computed.

We stop when no new state is generated.

The accepting states in the DFSM is {𝑞0, 𝑞2} because
{𝑞0, 𝑞2} ∩ 𝐴 𝑜𝑓 𝑛𝑑𝑓𝑠𝑚 ≠ ∅ where A of given ndfsm = {q2}

Transition diagram for DFSM:

The definition of the DFSM is as follows.

M’ = (k’,Σ, δ, s’,A’) where
K’= {{𝑞0}, {𝑞0, 𝑞1}, {𝑞0, 𝑞2}}

Transition Table

Δ M’ a b

→ 𝑞0 {𝑞0, 𝑞1} 𝑞0 {𝑞0, 𝑞1} so compute transitions for

them

{𝑞0, 𝑞1} {𝑞0, 𝑞1} {𝑞0, 𝑞2} ({𝑞0, 𝑞1}, a) = {𝑞0, 𝑎} ∪ {𝑞1, 𝑎) =
{𝑞0, 𝑞1} ∪ Φ = {𝑞0, 𝑞1}

({𝑞0, 𝑞1}, b) = {𝑞0, 𝑏} ∪ {𝑞1, 𝑏) =
{𝑞0, 𝑞1} ∪ Φ = {𝑞0, 𝑞2}

{𝑞0, 𝑞1} is a new state, so compute

transitions

∗ {𝑞0, 𝑞2} {𝑞0, 𝑞1} 𝑞0 ({𝑞0, 𝑞2}, a) = {𝑞0, 𝑎} ∪ {𝑞2, 𝑎) =
{𝑞0, 𝑞1} ∪ Φ = {𝑞0, 𝑞1}

({𝑞0, 𝑞2}, b) = {𝑞0, 𝑏} ∪ {𝑞2, 𝑏) =
{𝑞0} ∪ Φ = {𝑞0}

No new states, hence, stop

computing.

Σ = {a,b}
δ = { (({q0}, a), {𝑞0, 𝑞1}), (({q0}, b), {𝑞0}),
(({q0, q1}, a), {𝑞0, 𝑞1}), (({q0, q1}, b), {q0, q2}),
(({q0, q2}, a), {𝑞0, 𝑞1}), (({q0, q2}, b), {q0})}
s’={q0}
A’ = { {q0, q2} }

6 (a) How to calculate the epsilon closure, ε-closure, eps(q) of a state q?

eps(q) or ε-closure are the set of states reachable from q following 0 or more ε-

transitions.

eps(q) = {p∈k: (q,w) |— * (p,w)
where eps(q) is the closure of {q} under the relation {(p,r): there is a transition
(p, ε, r)∈ Δ}
eps(q:state)=
1. result = {q}
2. While there exists some p∈result and q∉result, and some transition, (p, ε,

r)∈Δ do : Insert r into result.
3. Return result

For example,

eps(q0) = {q0, q1, q2}

[03] CO2 L2

 (b) Convert the following ε-NDFSM to an equivalent DFSM and write it’s definition.

[07] CO2 L3

Transition Table

Δ M a b Eps(q)

→ p {𝑞} {p,r} {p,q,r}

q {p} Φ {q}

∗ 𝑟 {r} {p} {p,q,r}

M = (k,Σ, Δ, s,A) where
k= {p,q,r}
Σ = {a,b}

s =p

The definition of the DFSM is as follows.

M’ = (k’,Σ, δ, s’,A’) where
K’= {𝑝, 𝑞, 𝑟}}
Σ = {a,b}
δ = { (({p,q,r}, a), {𝑝, 𝑞, 𝑟}), (({p,q,r}, b), {𝑝, 𝑞, 𝑟})}
s’={{p,q,r}}
A’ = { {p,q,r}}

7 (a) What is a regular expression? What are the rules for forming regular expressions?

A regular expression contains 2 kinds of symbols.

• A set of symbols to which we attach particular meanings when they occur

in regular expressions, Φ, ∪, ε, (.), * and +

• An alphabet Σ which contains the symbols that regular expressions will

match against.

A regular expression is a string that can be formed according to the following rules.

1. Φ is a regular expression

2. ε is a regular expression

3. Every element in Σ is a regular expression

4. Given two regular expressions, α and ß, αß is also a regular expression

5. Given two regular expressions, α and ß, α∪ß is also a regular expression

6. Given a regular expression, α, α* is also a regular expression

[05] CO 1 L1

Transition Table

Δ M’ a b

→ {p,q,r} {𝑝, 𝑞, 𝑟} {p,q,r} ({𝑝, 𝑞, 𝑟}, 𝑎) = (𝑝, 𝑎) ∪ (𝑞, 𝑎) ∪ (𝑟, 𝑎)
= 𝑒𝑝𝑠(𝑞) ∪ 𝑒𝑝𝑠(𝑝) ∪ 𝑒𝑝𝑠(𝑟)
= {𝑞} ∪ {𝑝, 𝑞, 𝑟} ∪ {𝑝, 𝑞, 𝑟}
= {𝑝, 𝑞, 𝑟}

({𝑝, 𝑞, 𝑟}, 𝑏) = (𝑝, 𝑏) ∪ (𝑞, 𝑏) ∪ (𝑟, 𝑏)
= 𝑒𝑝𝑠(𝑝) ∪ 𝑒𝑝𝑠(𝑟) ∪ 𝑒𝑝𝑠(𝑝)
= {𝑝, 𝑞, 𝑟} ∪ {𝑝, 𝑞, 𝑟} ∪ {𝑝, 𝑞, 𝑟}
= {𝑝, 𝑞, 𝑟}

7. Given a regular expression, α, α+ is also a regular expression

8. Given a regular expression, α, (α) is also a regular expression

 (b) Write regular expression for

(i) {w∈{0,1}* : w are natural numbers in binary encoding that are
powers of 4 with no leading zeros. {1,100,10000,…}

Ans : 1 (00)*

(ii) {w∈{0,1}*: w has 101 as a substring.}
Ans : (0∪1)*101(0∪1)*
(iii) {w∈{a,b}*: w doesn’t end with ba}
(a∪b)*(aa∪bb∪ab)
(iv) {0n1m : n+m is even}
Ans : (00)*(11)* ∪ (0 (00)* 1 (11)*)

(v) {anbm : n<=2 and m>=3}
Ans : bbbb*∪ abbbb*∪ aabbbb*

[05] CO 1 L3

8 (a) What is meant by indistinguishable states, i.e. when q≡p. What is meant by

distinguishable states?

𝑞≡𝑝 are indistiguishable iff for all strings 𝑤∈Σ∗ either w drives M to an accepting

state from both q and p or it drives M to a rejecting state from both q and p.

q and 𝑝 are distinguishable if for all strings, 𝑤∈Σ∗ w drives M to an accepting state

from q and a non-accepting state from p or vice versa.

[03] CO2 L2

 (b) Let M be the following DFSM. Find a DFSM with minimal states. Show the steps.

Define the minimal DFSM.

First, we divide into accepting and non accepting classes.

Classes = [0,2], [1,3,4,5]

[07] CO2 L3

Check if splitting is required

[0,2] a b

[0] [1,3,4,5] [1,3,4,5] No splitting required as both 0 and 2 drive

a and b to the same non-accepting class
[2] [1,3,4,5] [1,3,4,5]

[1,3,4,5] a b

[1] [0,2] [1,3,4,5] Splitting required, [1],[3,5],[4]

[3] [1,3,4,5] [0,2]

[4] [1,3,4,5] [1,3,4,5]

[5] [1,3,4,5] [0,2]

Classes = [0,2],[1],[3,5],[4]

Classes = [0,2],[1],[3,5],[4]

The definition of the DFSM is as follows.

M’ = (k’,Σ, δ, s’,A’) where
K’= {[0,2],[1],[3,5],[4]}
Σ = {a,b}
δ = { (([0,2], a),[1]), (([0,2], b), [3,5]),
(([1], a), [0,2]), (([1], b), [4]),
(([3,5], a), [4]), (([3,5], b), [0,2]),
(([4], a), [3,5]), (([4], b), [1])
}
s’=[0,2]
A’ = {[0,2]}

Transition Table

[0,2] a b

[0] [1] [3,5] No splitting required as both 0 and 2 drive

a to non-accepting class [1] and b to non-

accepting class [3,5] [2] [1] [3,5]

[3,5] a b

[3] [4] [0,2] No splitting required as both 3 and 5 drive

a to non-accepting class [4] and b to

accepting class [0,2] [5] [4] [0,2]

Transition Table

δM’ a b
→*[0,2] [1] [3,5]

[1] [0,2] [4]

[3,5] [4] [0,2]

[4] [3,5] [1]

CO PO Mapping

Course Outcomes

M
o
d

u
le

s

co
v
er

ed

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

P
S

O
1

P
S

O
2

P
S

O
3

P
S

O
4

CO1

Acquire fundamental understanding

of the core concepts in automata

theory and Theory of Computation

1,2,3,4,

5

2 3 - - - 2 - - - - - - - 3 3

CO2

Learn how to translate between

different models of Computation

(e.g., Deterministic and Non-

deterministic and Software models).

1,2

2 3 2 2 2 2 - - - - - - - 3 3 3

CO3

Design Grammars and Automata

(recognizers) for different language

classes and become knowledgeable

about restricted models of

Computation (Regular, Context

Free) and their relative powers.

2,3

2 3 2 2 2 2 - - - - - - 2 - 3 -

CO4

Develop skills in formal reasoning

and reduction of a problem to a

formal model, with an emphasis

on semantic precision and

conciseness.

3,4

2 3 2 2 - 2 - - - - - - 2 2 3 3

CO5

Classify a problem with respect to

different models of Computation

5
2 3 2 2 - 3 - - - - - - 3 3 3 3

COGNITIVE

LEVEL
REVISED BLOOMS TAXONOMY KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,

discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,

change, classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)
CORRELATION

LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation

PO2 Problem analysis PO8 Ethics 1 Slight/Low

PO3 Design/development of solutions PO9 Individual and team work 2
Moderate/

Medium

PO4
Conduct investigations of

complex problems
PO10 Communication 3

Substantial/

High

PO5 Modern tool usage PO11 Project management and finance

PO6 The Engineer and society PO12 Life-long learning

PSO1 Develop applications using different stacks of web and programming technologies

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

PSO3 Apply software engineering methods to design, develop, test and manage software systems.

PSO4 Develop intelligent applications for business and industry

