

USN

Internal Assessment Test 1 – December 2021

Sub: Software Engineering Sub Code: 18CS35 Branch: ISE

Date: 16/12/2021 Duration: 90 min’s Max Marks: 50 Sem/Sec: III / A,B and C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 What is software engineering? Describe software engineering code of ethics? 10 CO2 L1

2 With a neat diagram, explain the waterfall model of software development process? 10 CO1 L2

3 Consider the use case insulin pump control system? Construct the model and explain

it.

10 CO1 L3

4 Explain the following important terms with example?

i) Identity ii) Classification iii) Inheritance iv) Polymorphism

10 CO1 L2

 5 What is Object Oriented Development? Explain different stages of object oriented

development

10 CO3 L2

6 What are Classes and objects? Write and explain UML notation for objects and

classes, values and attributes.

10 CO3 L2

 Faculty Signature CCI Signature HOD Signature

USN

Internal Assessment Test 1 – December 2021

Sub: Software Engineering Sub Code: 18CS35 Branch: ISE

Date: 16/12/2021 Duration: 90 min’s Max Marks: 50 Sem/Sec: III / A,B and C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 What is software engineering? Describe software engineering code of ethics? 10 CO2 L1

2 With a neat diagram, explain the waterfall model of software development process? 10 CO1 L2

3 Consider the use case insulin pump control system? Construct the model and explain

it.

10 CO1 L3

4 Explain the following important terms with example?

i) Identity ii) Classification iii) Inheritance iv) Polymorphism

10 CO1 L2

 5 What is Object Oriented Development? Explain different stages of object oriented

development

10 CO3 L2

6 What are Classes and objects? Write and explain UML notation for objects and

classes, values and attributes.

10 CO3 L2

 Faculty Signature CCI Signature HOD Signature

1c

Scheme of Evaluation

Internal Assessment Test 1 – May 2021

Sub: Software Engineering Code: 18CS35

Date:

16/12/2021

Duration:

90mins
Max

Marks:

50
Sem: III Branch: ISE

Note: Answer Any five full questions.

Question

Description Marks Distribution Max

Marks

1 Software engineering is an engineering discipline

that is concerned with all aspects of software

production

Explanation of software engineering code of ethics
Honesty and Integrity.
Confidentiality
Competence
Intellectual property rights
Computer misuse

 2M

 8M

10M 10M

2
 The waterfall model takes the fundamental process

activities of specification, development, validation,

and evolution and represents them as separate

process phases such as requirements specification,

software design, implementation, testing, and so on.

Diagram

Explanation

 2M

 4M

 4M

10M 10M

3
 An insulin pump is a medical system that simulates the

operation of the pancreas (an internal organ).

Diagram

Steps

Example

 2M

 4M
 4M

10M 10M

4

Explain about characteristics of Object-Oriented
Development with example

Explanation

Example

 10M

10M
 10M

5

Definition of Object-Oriented development

Explanation

Diagram

 2M

4M

4M

10M 10M

6

Definition of Classes and Objects

UML Notation for Classes and Objects
UML notation for Values and Attributes

 2M

 4M

 4M

10M 10M

Scheme of Evaluation Internal Assessment Test 1 – DEC 2021

Sub: Software Engineering Code: 18CS35

Date:

16/12/2021

Duration:

90mins
Max

Marks:

50
Sem: III Branch: ISE

Note: Answer Any full five questions

Q. 1 What is software engineering? Explain software engineering code of ethics?

Software engineering is an engineering discipline that is concerned with all aspects of software

production
It goes without saying that you should uphold normal standards of honesty and integrity.
1. Confidentiality You should normally respect the confidentiality of your employers or clients

irrespective of whether or not a formal confidentiality agreement has been signed.

2. Competence You should not misrepresent your level of competence. You should not knowingly accept

work that is outside your competence.

3. Intellectual property rights You should be aware of local laws governing the use of intellectual property

such as patents and copyright. You should be careful to ensure that the intellectual property of

employers and clients is protected.

4. Computer misuse You should not use your technical skills to misuse other people’s computers.

Computer misuse ranges from relatively trivial (game playing on an employer’s machine, say) to

extremely serious (dissemination of viruses or other malware).

Software engineers shall adhere to the following Eight Principles:

1. PUBLIC — Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER — Software engineers shall act in a manner that is in the best interests of their client

and employer consistent with the public interest.

3. PRODUCT — Software engineers shall ensure that their products and related modifications meet the

highest professional standards possible.

4. JUDGMENT — Software engineers shall maintain integrity and independence in their professional judgment.

5. MANAGEMENT — Software engineering managers and leaders shall subscribe to and promote an ethical

approach to the management of software development and maintenance.

6. PROFESSION — Software engineers shall advance the integrity and reputation of the profession consistent

with the public interest.

7. COLLEAGUES — Software engineers shall be fair to and supportive of their colleagues.

8. SELF — Software engineers shall participate in lifelong learning regarding the practice of their profession and

shall promote an ethical approach to the practice of the profession.

Q.2 With a neat diagram, explain the waterfall model of software development process?

The waterfall model takes the fundamental process activities of specification, development,

validation, and evolution and represents them as separate process phases such as requirements

specification, software design, implementation, testing, and so on.

Figure: The waterfall model

The principal stages of the waterfall model directly reflect the fundamental development

activities:

Requirement’s analysis and definition the system’s services, constraints, and goals are established by

consultation with system users. They are then defined in detail and serve as a system specification.

System and software design the systems design process allocates the requirements to either hardware or

software systems by establishing an overall system architecture. Software design involves identifying

and describing the fundamental software system abstractions and their relationships.

Implementation and unit testing During this stage, the software design is realized as a set of programs

or program units. Unit testing involves verifying that each unit meets its specification.

Integration and system testing the individual program units or programs are integrated and tested as

a complete system to ensure that the software requirements have been met. After testing, the software

system is delivered to the customer.

Operation and maintenance Normally (although not necessarily), this is the longest life cycle phase.

The system is installed and put into practical use. Maintenance involves correcting errors which were

not discovered in earlier stages of the life cycle, improving the implementation of system units and

enhancing the system’s services as new requirements are discovered.

In principle, the waterfall model should only be used when the requirements are well

understood and unlikely to change radically during system development. However, the

waterfall model reflects the type of process used in other engineering projects. As is easier to

use a common management model for the whole project, software processes based on the

waterfall model are still commonly used.

Requirements

Definition

System and

Software Design

Implementation

and Unit Testing

Integration and

System Testing

Operation and

Maintenance

Q.3 With a neat diagram, explain the insulin pump control system.

Current advances in developing miniaturized sensors have meant that it is now possible to

develop automated insulin delivery systems. These systems monitor blood sugar levels and

deliver an appropriate dose of insulin when required. Insulin delivery systems like this

already exist for the treatment of hospital patients. In the future, it may be possible for

many diabetics to have such systems permanently attached to their bodies.

A software-controlled insulin delivery system might work by using a micro- sensor

embedded in the patient to measure some blood parameter that is proportional to the

sugar level. This is then sent to the pump controller. This controller computes the sugar

level and the amount of insulin that is needed. It then sends signals to a miniaturized

pump to deliver the insulin via a permanently attached needle.
Essential high-level requirements:

• The system shall be available to deliver insulin when required.

• The system shall perform reliably and deliver the correct amount of insulin to counteract the current level of

blood sugar.

• The system must therefore be designed and implemented to ensure that the system always meets these

requirements.

4. Explain the following important terms with example?

i) Identity ii) Classification iii) Inheritance iv) Polymorphism

Identity means that data is organized into discrete, distinguishable entities called objects.
An object has:

• state - descriptive characteristics

• behaviors - what it can do (or what can be done to it)

Power Supply

Controller

Pump

Insulin Reservoir

Sensor

Needle

Assembly

Display2 Display1

Alarm

Clock

• The state of a bank account includes its account number and its

current balance

• The behaviors associated with a bank account include the ability to make deposits and withdrawals

• Note that the behavior of an object might change its state

Software objects model read-world objects or abstract concepts

• dog, bicycle, Bank account

Real-world objects have states and behaviors

• Dogs' states: name, color, breed, hungry

• Dogs' behaviors: barking fetching

Objects have three responsibilities:
What they know about themselves – (e.g., Attributes)
What they do – (e.g., Operations)

What they know about other objects – (e.g., Relationships)

Classification

It means that objects with same data structure (attribute) and behavior (operations) are grouped into a

class.
• A class is simply a representation of a type of object. It is the blueprint/ plan/ template that describe the

details of an object.

• A class is the blueprint from which the individual objects are created.

 Polymorphism

 It means that the same operation (i.e. action or transformation that the object performs) may behave

differently on different classes.

 Ability of different objects to response same message in different ways.

 Ability of an object to take on multiple forms.

 In a programming language, class objects belonging to the same hierarchical tree may have functions

with the same name, but with different behaviors.

 iv)Inheritance:
• It is the sharing of attributes and operations among classes based on a hierarchical relationship.

• Subclasses can be formed from broadly defined class.
• Each subclass incorporates or inherits all the properties of its super class and adds its own unique

properties.

5. What is Object Oriented Development? Explain different stages of object oriented

Development

Object Oriented Development

The essence of OO Development is the identification and organization of application concepts, rather than their
final representation in a programming language.
It’s a conceptual process independent of programming languages. OO development is fundamentally a way of
thinking and not a programming technique
Object-Oriented Methodology

• The process for OO development and graphical notation for representing OO concepts consists of

building a model of an application and then adding details to it during design.
The methodology has the following stages:

• 1.System conception : Software development begins with business analysts or users conceiving an
application and formulating tentative requirements.

• 2.Analysis : The analyst must work with the requestor to understand the problem, because problem

statements are rarely complete or correct.
The analysis model is a precise abstraction of what the desired system must do, not how it will be done.

• It should not contain implementation decisions
• Ex: identifying the classes, its attributes and operations.

The analysis model has 2 parts:

• 2.a Domain model - a description of the real-world objects reflected within the system.
 Example for Domain objects for a stock broker.
 stock, bond, trade and commission.

• 2.b Application model - a description of the parts of the application system itself that are visible to the
user.

Ex: Application objects might control the execution of trades and present the results.
Application experts who are not programmers can understand and criticize a good model.

• 3.System design: The development teams devise a high – level strategy – the system architecture for
solving the application problem.

• Establish policies that will serve as a default for the subsequent portion of design

• Decide performance characteristics to optimize the problems.
• 4.Class design: The class designer adds details to the analysis model in accordance with the system

design strategy.
• The focus of class design is the data structures and algorithms needed to implement each class.
• 5. Implementation: Implementers translate the classes and relationships developed during class design

into particular programming language, database or hardware.
 During implementation, it is important to follow good software engineering practice so that traceability to
the design is apparent and so that the system remains flexible and extensible.

Three kinds of models to describe a system from different viewpoints.,

• 1. Class Model—for the objects in the system & their relationships. It describes the static structure of the
objects in the system and their relationships. Class model contains class diagrams- a graph whose nodes
are classes and arcs are relationships among the classes.

• 2. State model—for the life history of objects. It describes the aspects of an object that change over time.
It specifies and implements control with state diagrams-a graph whose nodes are states and whose arcs are

transition between states caused by events.
• 3. Interaction Model—for the interaction among objects. It describes how the objects in the system co-

operate to achieve broader results. This model starts with use cases that are then elaborated with sequence
and activity diagrams.

• Use case – focuses on functionality of a system – i.e what a system does for users.
• Sequence diagrams – shows the object that interact and the time sequence of their interactions.

• Activity diagrams – elaborates important processing step

5. What are classes and objects? Write and explain UML notation for objects and classes, values

and attributes.

Class diagrams provide a graphic notation for modeling classes and their relationships, thereby describing possible

objects.

• A Class Diagram is a diagram describing the structure of a system

• Shows the system's

• Classes

• Attributes

• Operations (or methods),

• Relationships among the classes

Attributes are usually listed in the form:

attributeName : Type

A derived attribute is one that can be computed from other attributes, but doesn’t actually exist.

For example,a Person’s age can be computed from his birth date. A derived attribute is designated by a preceding ‘/’ as

in:

/ age : Date

Attributes can be:

+ public

protected

- Private

/ derived

Person

name : String

birthdate : Date ssn :

Id

eat() sleep() work()

• Conventions used (UML):

• UML symbol for both classes and objects is box.

• Objects are modeled using box with object name followed by colon followed

by class name, Both the names are underlined.

• Use boldface to list class name, center the name in the box and capitalize the

first letter. Use singular nouns for names of classes.

• To run together multiword names (such as JoeSmith), separate the words With intervening

capital letter.

Values and Attributes:

• Value is a piece of data

• Attribute is a named property of a class that describes a value held by each object of the

class.

E.g. Attributes: Name, bdate, weight. Values: JoeSmith, 21 October 1983, 64.

List attributes in the 2nd compartment of the class box.

A colon precedes the type, an equal sign precedes default value.

Show attribute name in regular face, left align the name in the box and use small case for the

first letter.

Similarly we may also include attribute values in the 2nd compartment of object boxes with

same conventions.

