

US

N

Internal Assessment Test II – Dec 2021

Sub

:
Application Development Using Python Sub Code: 18CS55 Branch: ISE

Date:
20/12/20

21

Duratio

n:
90 mins

Max

Marks:
50 Sem/Sec: V A,B&C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1a) List any six methods associated with string and explain each of them

with example. (each 1M)

i) upper(): This method is used to convert lower case characters into

upper case characters.

Ex: x = ‗Python‘

x = x.upper()

PYTHON

ii) lower(): This method is used to convert upper case characters into

lower case characters.

Ex: x = ‗Python‘

x = x.lower()

python

iii) isupper(): This method is used to check whether a string has at least

one letter or complete

string is upper or not. It returns Boolean value.

Ex: x = ‗Python‘

x = x.isupper()

TRUE

Ex: y = ‗python‘

y = y.isupper()

FALSE

iv) islower(): This method is used to check whether a string has at least

one letter or complete

string is lower or not. It returns Boolean value.

Ex: x = ‗Python‘

x = x.islower()

TRUE

Ex: y = ‗PYTHON‘

y = y.isupper()

FALSE

6*1=6 CO2 L2

v) isspace(): Returns True if the string consists only of spaces, tabs,

and newlines and is not

blank.

Ex: ‗ ‗.isspace()

TRUE

vi) isalnum(): Returns True if the string consists only of letters and

numbers and is not blank.

Ex: ‗hello123‘.isalnum()

TRUE

Ex: ‗ ‗.isalnum()

FALSE

b) Write a Python program to swap cases of a given string. Program(4M)

Input: python

Output: PYTHON

Solution 1: Using inbuilt function

print("Enter a String")

string = input()

print(string.swapcase())

Solution 2: Without using inbuilt function

def swapcase(string):

result_str = ""

for item in string:

if item.isupper():

result_str += item.lower()

else:

result_str += item.upper()

return result_str

string = input("Enter a String")

print(swapcase(string))

4 CO2 L2

2a) Describe the following with suitable Python code snippet.

(i) Greedy and Non Greedy Pattern Matching(4M) (ii) findall() method of

Regex object.(2M)

(i) Greedy and Non Greedy Pattern Matching:

 Greedy pattern matching means matching with the longest possible

string. By default, in python

greedy matching is followed.

Non-greedy pattern matching means matching with the shortest possible

string. It should be

represented explicitly using a question mark after the curly brackets.

4+2=6 CO3 L2

Ex

(ii) findall() method of Regex object.

 search() method will return a Match object of the first matched text

in the searched string.

 findall() method will return the strings of every match in the searched

string in the form of list of

strings—as long as there are no groups in the regular expression.

(b) Write a python program to extract phone numbers and email addresses

using regex. Use input from the clipboard and use relevant module

imported. (2+2M)

import pyperclip, re

phoneRegex = re.compile(r'''(

(\d{3}|\(\d{3}\))? # area code

(\s|-|\.)? # separator

(\d{3}) # first 3 digits

(\s|-|\.) # separator

(\d{4}) # last 4 digits

(\s*(ext|x|ext.)\s*(\d{2,5}))? # extension

)''', re.VERBOSE)

Create email regex.

emailRegex = re.compile(r'''([a-zA-Z0-9._%+-]+

[a-zA-Z0-9.-]+ # domain name

(\.[a-zA-Z]{2,4}){1,2} # dot-something

)''', re.VERBOSE)

4 CO3 L2

3(a) You are creating a fantasy video game. The data structure to model the

player‘s inventory will be a nested dictionary. The keys are name of the

players and values are items represented in dictionary again. Keys in the

inner dictionary String values describing the item in the inventory and

the value is an integer value detailing how many of that item the player

has. For example, the dictionary value {'rope': 1, 'torch': 6, 'gold coin':

42, 'dagger': 1, 'arrow': 12} means the player has 1 rope, 6 torches, 42

gold coins, and so on. Similarly have items for different players. Write a

function named displayInventory () that would take any possible

―inventory‖ and display the total count of Inventory item given as a

input. Program(5M)

Use Nested Dict.

stuff = {'rope': 1, 'torch': 6, 'gold coin': 42, 'dagger': 1, 'arrow': 12}

def displayInventory(inventory):

print("Inventory:")

item_total = 0

for k, v in inventory.items():

5 CO2 L3

item_total = item_total + v

print(str(stuff.get(k, 0)) + ' ' + k)

print("Total number of items: " + str(item_total))

displayInventory(stuff)

(b) Explain the use of get() and setdefault() methods in dictionary

with suitable code snippet. The get() Method (Each 2.5M)

 Dictionaries have a get() method that takes two arguments:

o The key of the value to retrieve and

o A fallback value to return if that key does not exist.

The setdefault() Method

 To set a value in a dictionary for a certain key only if that key does

not already have a value.

 The setdefault() method offers a way to do this in one line of code.

 Setdeafault() takes 2 arguments:

o The first argument is the key to check for, and

o The second argument is the value to set at that key if the

key does not exist. If the key does exist, the setdefault()

method returns the key‘s value.

 The first time setdefault() is called, the dictionary in spam

changes to {'color': 'black', 'age': 5, 'name': 'Pooka'}. The method

returns the value 'black' because this is now the value set for the

5 CO2 L2

key 'color'. When spam.setdefault('color', 'white') is called next,

the value for that key is not changed to 'white' because spam

already has a key named 'color'.

4 (a) Explain the various string methods for the following operations with

examples.

(i) Removing whitespace characters from the beginning, end or both

sides of a string. (2M)

(ii) To right-justify, left-justify, and center a string.(3M)

 Removing whitespace characters from the beginning, end or both

sides of a string.

 The strip() string method will return a new string without any

whitespace characters at the

beginning or end.

The lstrip() and rstrip() methods will remove whitespace

characters from the left and right ends,

respectively

 To right-justify, left-justify, and center a string.

The rjust() and ljust() string methods return a padded version of

the string they are called on, with

spaces inserted to justify the text.

 The first argument to both methods is an integer length for the

justified string.

5 CO2 L2

(b) Write a program that reads a 10 strings as input. Display all the strings

that starts with ‗a‘ and ends with ‗z‘. program (5M)

The caret symbol ()̂ at the start of a regex is used to indicate that a

match must occur at the beginning of the searched text.

Search.py

import re

regex= re.compile(r' â... z$')

str = input()

if regex.search(str):

print("Search Successful")

else:

print("Search unsuccessful")

Sample output 1

> python Search.py

Hello

Search unsuccessful

5 CO3 L2

Sample output 2

> python Search.py

abyzz

Search Successful

Sample output 3

>python Search.py

abeizz

Search unsuccessful

5 (a) What are regular expressions? Describe question mark(?), star(*),

plus(+) and dot(.) regex symbols with suitable Python code

snippets.(2+3M)

Regular expressions are used for pattern matching. They have special

characters that are interpreted for the purpose of matching patterns in

text.

 1. Import the regex module with import re.

 2. Create a Regex object with the re.compile() function.

(Remember to use a raw string.)

 3. Pass the string you want to search into the Regex object‘ s search()

method.This returns a Match object.

 4. Call the Match object‘s group() method to return a string of the

actual matched text.

Optional matching with ?

 a pattern to match only optionally

 ? character flags the group that precedes it as an optional part

 (wo)? : pattern wo is an optional group

 Match has zero instances or one instance text that of wo in it

>>> spider_re = re.compile(r'Spider(wo)?man')

>>> mo1 = spider_re.search('The Amazing Spiderman')

>>> mo1.group()

Spiderman

>>> mo2 = spider_re.search('The all new Spiderwoman')

>>> mo2.group()

Spiderwoman

Here the ‗wo‘ is matched optionally.

Matching 0 or more with the star

 * (called the star or asterisk) means ―match zero or more‖.

 Group that precedes the star can occur any number of times in the text

 can be completely absent

 Or repeated over and over again

 ‗Spiderman‘ (wo)* part of the regex matches zero instances

 ‗Spiderwoman', the (wo)* matches one instance of wo

5 CO3 L2

(b) Write a Python program to reverse words in a given String in Python.

[Input : str = ―python quiz practice code." Output : str = "code. practice

5 CO2 L3

quiz python―] Program 5M

s = input()

words = s.split(' ')

string =[]

for word in words:

 string.insert(0, word)

print("Reversed String:")

print(" ".join(string))

6 a) In the regex created from the following code,

import re

phoneRegex = re.compile(r'(\d*)?-(\d{3})-(\d{3,5})')

mo=phoneRegex.search('333-444-55555') Each 1M

mo.group(0)

mo.group(1)

mo.group(2)

mo.gorup(3)

What is the output of this program?

333-444-55555

333

444

55555

4 CO3 L2

(b) How would you write a regex that matches a number with commas for

every three digits from right to left? It must match the following:

 '42'

 '1,234'

 '6,368,745'

but not the following:

 '12,34,567' (which has only two digits between the commas)

'1234' (which lacks commas) Program: 6M

Program:

import re

pattern =r"(?<!\d,)(?<!\d)[1-9][0-9]{0,2}(?:,\d{3})*(?!,?\d)"

string = '42 1,234 6,368,745 12,34,567 1234'

a = re.findall(pattern,string)

print(a) # => ['42', '1,234', '6,368,745']

or

 r'(?<![,\d])[1-9]\d{,2}(?:,\d{3})*(?![,\d])'

Regex details

6 CO3 L3

 (?- no digit or digit +,` allowed immediately to the left of the current location

 [1-9][0-9]{0,2} - a non-zero digit followed with any zero, one or two digits

 (?:,\d{3})* - 0 or more occurrences of a comma and then any three digits

 (?!,?\d) - no , or , + digit allowed immediately to the right of the current

location.

