
 

 

Scheme of Evaluation 

Internal Assessment Test 2 – Dec.2021 

Sub: Artificial Intelligence & Machine Learning Code: 18CS71 

Date: 20/12/2021 Duration: 90mins 
Max 

Marks:  50 
Sem: VII Branch: ISE 

Note: Answer Any Five Questions 

Question 

# 
Description Marks Distribution Max 

Marks 

1 

 Finding the overall probabilities 

 Applying Naïve Bayes to calculate the 

conditional probabilities 
 Predicting the result  

2 M  
6 M 

 

2 M 
 

10 M 10 M 

2 

 Finding the euclidean distance  

 Updating the centroid 

 Applications of kmeans clustering 

4 M 

4 M 

2 M 

10 M 10 M 

3 

 Back propagation algorithm                     

 Deriving the derivatives rule  

  4 M 

  6 M 

 

10 M 
10 M 

4 

  Finding the Euclidean distance 

 Choosing the neighbors based on k value and 

predicting the result for test data 

 Application of kNN 

6M 

2M 

2M 

10M 

 
10 M 

5a) 

 

 Bayesian belief networks explanation 

 Example 

2 M 

4 M 
6 M 

10 M 

5b) 

 EM algorithm explanation 4 M 

 

4 M 

 

6a) 

 

 Defining perceptron  

 Discussing the Training rule  

    2 M 

3 M 

 

5 M 

10 M 

6b) 

- Use of Bayesian learning 

- Features of Bayesian learning 

- Difficulties 

1 M 

2 M 

2 M 

5 M 

 

 

 

 

 

 



 
Internal Assessment Test 2 Solutions– Dec.2021 

Sub: Artificial Intelligence & Machine Learning Code: 18CS71 

Date: 20/12/2021 Duration: 90mins 
Max 

Marks:  50 
Sem: VII Branch: ISE 

Note: Answer Any Five Questions 

1. Classify the test data {Red, SUV, Domestic} using NAÏVE Bayes classifier for the dataset shown 

below. 

Color Type Origin Stolen 

Red Sports Domestic Yes 

Red Sports Domestic No 

Red Sports Domestic Yes 

Yellow Sports Domestic No 

Yellow Sports Imported Yes 

Yellow SUV Imported No 

Yellow SUV Imported Yes 

Yellow SUV Domestic No 

Red SUV Imported No 

Red Sports Imported Yes 

 

Solution: 

 

The probabilities of the different target values can easily be estimated based on 

their frequencies over the 10 training examples 

 

- P(Yes) = 5/10 = 0.5 

- P(No) = 5/10 = 0.5 

 

For new data {Red, SUV, Domestic} we need to classify the result 

 

 
   = argmax P (Vj) * P (Red|Vj) * P (SUV|Vj) * P (Domestic|Vj), Vj ={Yes, No} 

   

Now we need to find the conditional probabilities for the test data as mentioned below 

- P(Red|Vj=Yes) = 3/5 = 0.6 

- P(SUV|Vj=Yes) = 1/5 = 0.2 

- P(Domestic|Vj=Yes) = 2/5 = 0.4 

 

Now we need to find the conditional probabilities for the test data w.r.t ‘No’as mentioned 

below 

- P(Red|Vj=No) = 2/5 = 0.4 

- P(SUV|Vj=No) = 3/5 = 0.6 

- P(Domestic|Vj=No) = 3/5 = 0.6 

 

Finally for the test data we have the formula as below 

 



VNB{Yes} = P (Yes)*P (Red|Yes)*P(SUV|Yes)*P(Domestic|Yes) = 0.5*0.6*0.2*0.4 = 0.024 

 

VNB{No} = P (No)* P(Red|No)*P(SUV|No)*P(Domestic|No) = 0.5*0.4*0.6*0.6 = 0.072 

 

So for new data {Red, SUV, Domestic} the result is No 

 

 

 
2. Consider the following iris dataset. Using the k-Means Clustering approach, classify the below examples 

into k clusters by taking k value as 2.Also mention the applications of k-Means clustering approach.(Can 

consider 2 initial values for the first step as No.3 and No.6) 

 No sepal.length sepal.width 

1 5.1 3.5 

2 4.9 3 

3 7 3.2 

4 6.4 3.2 

5 6.3 3.3 

6 5.8 2.7 

 

Solution: 

 

Since k=2, initial values are 3 and 6 

Initial 

centroid X Y 

c1 7 3.2 

c2 5.8 2.7 
 

  

   

2)Calculate the euclidean distance of the given equation 

Distance(X,Y)(a,b) = Sqrt(X-a)2+(X-b)2  
 

Initial 

centroid X Y Distance from cluster1 Distance from cluster2 

1 5.1 3.5 sqrt(7-5.1)2+(3.2-3.5)2 = 1.92 sqrt(5.8-5.1)2+(2.7-3.5)2 = 1.02 

2 4.9 3 sqrt(7-4.9)2+(3.2-3)2 = 2.10 sqrt(5.8-4.9)2+(2.7-3)2 = 0.94 

3 7 3.2 sqrt(7-7)2+(3.2-3.2)2 = 0 sqrt(5.8-7)2+(2.7-3.2)2 = 1.30 

4 6.4 3.2 sqrt(7-6.4)2+(3.2-3.2)2 = 0.6 sqrt(5.8-6.4)2+(2.7-3.2)2 = 0.94 

5 6.3 3.3 sqrt(7-6.3)2+(3.2-3.3)2 = 0.70 sqrt(5.8-6.3)2+(2.7-3.3)2 = 0.81 

6 5.8 2.7 sqrt(7-5.8)2+(3.2-2.7)2 = 1.30 sqrt(5.8-5.8)2+(2.7-2.7)2 = 0 
 

   

1st iteration     

  C1 C2 assigned to 

1 1.92 1.02 c2 

values 3,4,5 belongs to c1 and 1,2,6 

belongs to c2  

2 2.1 0.94 c2 

Now we need to calculate the new 

centroids  

3 0 1.3 c1 

c1= (7+6.4+6.3)/3 = 6.56, (3.2+3.2+3.3)/3 = 

3.23 = (6.6,3.2) 

4 0.6 0.94 c1 c2=(5.1+4.9+5.8)/3 = 5.26, (3.5+3+2.7)/3 =3.06 = (5.3,3.1) 

5 0.7 0.81 c1 

6 1.3 0 c2 
 



   

2nd iteration         

Find the distance w.r.t the updated centroid 6,6, 3.2 and 5.3,3.1 
 

  

Initial 

centroid X Y Distance from cluster1 Distance from cluster2 

1 7 3.2 sqrt(6.6-5.1)2+(3.2-3.5)2 = 1.52 sqrt(5.3-5.1)2+(3.1-3.5)2 = 0.44 

2 5.8 2.7 sqrt(6.6-4.9)2+(3.2-3)2 = 1.71 sqrt(5.3-4.9)2+(3.1-3)2 = 0.41 

3 7 3.2 sqrt(6.6-7)2+(3.2-3.2)2 = 0.4 sqrt(5.3-7)2+(3.1-3.2)2 = 1.70 

4 6.4 3.2 sqrt(6.6-6.4)2+(3.2-3.2)2 = 0.2 sqrt(5.3-6.4)2+(3.1-3.2)2 = 1.10 

5 6.3 3.3 sqrt(6.6-6.3)2+(3.2-3.3)2 = 0.31 sqrt(5.3-6.3)2+(3.1-3.3)2 = 1.07 

6 5.8 2.7 sqrt(6.6-5.8)2+(3.2-2.7)2 = 0.94 sqrt(5.3-5.8)2+(3.1-2.7)2 = 0.78 

 

  C1 C2 

assigned 

to       

1 1.52 0.44 c2  

2 1.71 0.41 c2 

3 0.4 1.7 c1 

4 0.2 1.1 c1 

5 0.31 1.07 c1 

6 0.94 0.78 c2 

 

  C1 C2 

assigned 

to 

1 1.52 0.44 c2 

2 1.71 0.41 c2 

6 0.94 0.78 c2 

3 0.4 1.7 c1 

4 0.2 1.1 c1 

5 0.31 1.07 c1 

 

 

3. Write an algorithm for back propagation which uses stochastic gradient descent method. Derive 

the back propagation rule considering the output layer and training rule for output unit weights. 
 

Solution: 

 

                         Values 3,4,5 belongs to c1 and 1,2,6 belongs to c2 

                         Since there is no change in the previous cluster values, we will stop here and the final clusters are as mentioned below.  



 
 

 

Derivation of the BACKPROPAGATION Rule 
 

Deriving the stochastic gradient descent rule: Stochastic gradient descent involves iterating 

through the training examples one at a time, for each training example d descending the 

gradient of the error Ed with respect to this single example 

 

 
For each training example d every weight wji is updated by adding to it Δwji 



Here outputs is the set of output units in the network, tk is the target value of unit k 

for training example d, and ok is the output of unit k given training example d. 

 

The derivation of the stochastic gradient descent rule is conceptually straightforward, 

but requires keeping track of a number of subscripts and variables 

 

 xji = the ith input to unit j

 wji = the weight associated with the ith input to unit j

 netj = Σi wjixji (the weighted sum of inputs for unit j )

 oj = the output computed by unit j

 tj = the target output for unit j

 σ = the sigmoid function

 outputs = the set of units in the final layer of the network

 Downstream(j) = the set of units whose immediate inputs include the output of 

unit j
 

 

Consider two cases: The case where unit j is an output unit for the network, and the 

case where j is an internal unit (hidden unit). 

 

Case 1: Training Rule for Output Unit Weights. 

wji can influence the rest of the network only through netj , netj can influence the 

network only through oj. Therefore, we can invoke the chain rule again to write 

 



 
 

 

 

 

 
4. Consider the training examples shown in the following table. The table shows a training set for a 

problem of predicting whether a loan applicant will repay his/her loan obligation or defaulting on his/her 

loan. 

Tid House 

Owner 

Marital Status Annual 

income 

Defaulted 

Borrower 

1 Yes Single 125K No 

2 No Married 100K No 

3 No Single 70K No 

4 Yes Married 120K No 

5 No Divorced 95K Yes 

6 No Married 60K No 

7 Yes Divorced 220K No 

8 No Single 85K Yes 

9 No Married 75K No 

10 No Single 90K Yes 

 

Using the kNN approach, predict the class label for this test example 

House Owner=No, Marital Status=Married, Annual income=120K.Assume that k=3, single=0, 

married=1 and divorced=2 

 

Solution: 

 

- Find the Euclidean distance between all the values 

Sqrt((x2-x1)2+(y2-y1)2) 

 

- Convert the categorical values into numericals. i.e assume Yes=1, No=0 
Tid Distance 

1 Sqrt(0-1)2+(1-0)2+(120-125)2 = 5.196 

2 Sqrt(0-0)2+(1-1)2+(120-100)2 = 20 

3 Sqrt(0-0)2+(1-0)2+(120-70)2 = 50 

4 Sqrt(0-1)2+(1-1)2+(120-120)2 = 1 

5 Sqrt(0-0)2+(1-2)2+(120-95)2 = 25 

6 Sqrt(0-0)2+(1-1)2+(120-60)2 = 60 



7 Sqrt(0-1)2+(1-2)2+(120-220)2 =100 

8 Sqrt(0-0)2+(1-0)2+(120-85)2 = 35 

9 Sqrt(0-0)2+(1-1)2+(120-75)2 =45 

10 Sqrt(0-0)2+(1-0)2+(120-90)2 = 30 

 

Since k=3, we will choose 3values based on minimum distance 

i.e.  
Tid Distance Defaulted 

Borrower 

1 Sqrt(0-1)2+(1-0)2+(120-125)2 = 5.196 No 

2 Sqrt(0-0)2+(1-1)2+(120-100)2 = 20 No 

4 Sqrt(0-1)2+(1-1)2+(120-120)2 = 1 No 

 

For all these 3 neighbors the default class is No. Hence for the test data 

House Owner=No, Marital Status=Married, Annual income=120K – No 

 

Applications of kNN: 

 

- Text mining 

- Agriculture 

- Finance 

- Medical 

- Facial recognition 

- Recommendation systems (Amazon, Hulu, Netflix, etc) 

 

 

5.a) Explain Bayesian Belief Networks and conditional independence with example 

Solution: 

 

BAYESIAN BELIEF NETWORKS 

 

 The naive Bayes classifier makes significant use of the assumption that the values 
of the attributes a1 . . .an  are conditionally independent given the target value v.

 This assumption dramatically reduces the complexity of learning the target 

function

A Bayesian belief network describes the probability distribution governing a set of 

variables by specifying a set of conditional independence assumptions along with a set of 

conditional probabilities 

Bayesian belief networks allow stating conditional independence assumptions that apply 

to subsets of the variables 

 

Representation 

A Bayesian belief network represents the joint probability distribution for a set of 

variables. 

Bayesian networks (BN) are represented by directed acyclic graphs. 
 
 
 
 
 
 
 

 



 

 

 

 

The Bayesian network in above figure represents the joint probability distribution over 

the boolean variables Storm, Lightning, Thunder, ForestFire, Campfire, and 

BusTourGroup 

 

A Bayesian network (BN) represents the joint probability distribution by specifying a set 

of conditional independence assumptions 

 BN represented by a directed acyclic graph, together with sets of local conditional 
probabilities

 Each variable in the joint space is represented by a node in the Bayesian network


 The network arcs represent the assertion that the variable is conditionally 
independent of its non-descendants in the network given its immediate predecessors 
in the network.


 A conditional probability table (CPT) is given for each variable, describing the 

probability distribution for that variable given the values of its immediate 
predecessors 

The joint probability for any desired assignment of values (y1, . . . , yn) to the tuple of 

network variables (Y1 . . . Ym) can be computed by the formula  
 

 

 

 

Where, Parents(Yi) denotes the set of immediate predecessors of Yi in the network. 

 

Example: 

Consider the node Campfire. The network nodes and arcs represent the assertion that 

Campfire is conditionally independent of its non-descendants Lightning and Thunder, 

given its immediate parents Storm and BusTourGroup. 
  
 
 
 
 
 
 
 
 
 

 

 

 

 

This means that once we know the value of the variables Storm and BusTourGroup, the 

variables Lightning and Thunder provide no additional information about Campfire The 

conditional probability table associated with the variable Campfire. The assertion is 

P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4 

 



 

5.b) Explain the EM Algorithm in detail. 

 Solution: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.a) Define perceptron and discuss its training rule. 

 

Solution: 

 

One type of ANN system is based on a unit called a perceptron. Perceptron is a single layer 

neural network. 

 

 

 

A perceptron takes a vector of real-valued inputs, calculates a linear combination of these 

inputs, then outputs a 1 if the result is greater than some threshold and -1 otherwise. 

Given inputs x through x, the output O(x1, . . . , xn) computed by the perceptron is 
 



 

 
The Perceptron Training Rule 

 

The learning problem is to determine a weight vector that causes the perceptron to produce the 

correct + 1 or - 1 output for each of the given training examples. 

 

To learn an acceptable weight vector 

- Begin with random weights, then iteratively apply the perceptron to each training example, 

modifying the perceptron weights whenever it misclassifies an example. 

- This process is repeated, iterating through the training examples as many times as needed 

until the perceptron classifies all training examples correctly. 

- Weights are modified at each step according to the perceptron training rule, which revises 

the weight wi associated with input xi according to the rule. 

 

 

 

 

- The role of the learning rate is to moderate the degree to which weights are changed at each 

step. It is usually set to some small value (e.g., 0.1) and is sometimes made to decay as the 

number of weight-tuning iterations increases 

 

 

6.b) How Bayesian learning is useful in a machine learning context? Explain the features of 

Bayesian learning methods and difficulties? 

 

Solution: 

Bayesian learning methods are relevant to study of machine learning for two different reasons.  

1. First, Bayesian learning algorithms that calculate explicit probabilities for hypotheses, such as 

the naive Bayes classifier, are among the most practical approaches to certain types of learning 

problems  

2. The second reason is that they provide a useful perspective for understanding many learning 

algorithms that do not explicitly manipulate probabilities.  



Features of Bayesian Learning Methods  

1. Each observed training example can incrementally decrease or increase the 

estimated probability that a hypothesis is correct. This provides a more flexible approach 

to learning than algorithms that completely eliminate a hypothesis if it is found to be inconsistent 

with any single example  

2. Prior knowledge can be combined with observed data to determine the final probability of a 

hypothesis. In Bayesian learning, prior knowledge is provided by asserting (1) a prior probability 

for each candidate hypothesis, and (2) a probability distribution over observed data for each 

possible hypothesis.  

3. Bayesian methods can accommodate hypotheses that make probabilistic predictions  

4. New instances can be classified by combining the predictions of multiple hypotheses, weighted 

by their probabilities. 

Even in cases where Bayesian methods prove computationally intractable, they can provide 

a standard of optimal decision making against which other practical methods can be measured.  

 

Practical difficulty in applying Bayesian methods  

1. One practical difficulty in applying Bayesian methods is that they typically require 

initial knowledge of many probabilities. When these probabilities are not known in advance they 

are often estimated based on background knowledge, previously available data, and assumptions 

about the form of the underlying distributions.  

2. A second practical difficulty is the significant computational cost required to determine the 

Bayes optimal hypothesis in the general case. In certain specialized situations, this computational 

cost can be significantly reduced. 

 


