1. What is recursion? Write C function:
i)Tower of Hanoi
i))GCD of two numbers
iii)Ackermann’s Function. Also solve A(1,5)

Recursion is the process of repeating items in a self-similar way. If a program allows you to call a
function inside the same function, then it is called a recursive call of the function.

i)
stdio.h

Towers(>
maind)

num;
printf{"Enter the number
scan¥f(""%d" , &num) ;
printFf{ " The seqguenc
Tower of Hanoi are

towers (num, AT,
e;

towers(fFfrompeg,

m == 1)

printf("\nMove disk 1 Ffrom peg
frompeg, topeg);

>

3}

towers{(num - 1, Ffrompeg, auxpeg, topeg);
printFf{"\“nMove disk 2%d from peg %c to peg
fFfrompeg, topeg);

towers({(num - 1, auxpeg, topeg, fTrompeg);

stdio.h
ged(nl, n2);
main()

nl, n2;
printf("Enter two positive int
scanf("%d %d”, &nl, &n2);
printf("G.C.D of %d and %d is
n2));
e;

ged(nl, n2)

(n2 !'= ©)
ardfn? nl % nz);
nl

nl;

iii)

(n==a)
AdCm-—21 , 1) 3

AlCm—L , ACm,n—1) D)

2. What is a Queue/Linear Queue? List different types of Queue. Write C implementation
for insert() and delete operations.

Queue is a linear data structure. It follows the principle of FIFO(First In First Out). Insertion
operation is performed from the REAR end. Deletion operation is performed from the FRONT end.
The different types of queues are:- Simple Queue, Circular Queue, Double Ended Queue and
Priority Queue.

insertQ() deleteQ()
wval;

num;
(front == -1 || front > rear)

printf("\n Enter the number to be inserted in the

printf("\n UNDERFLOW™) ;

queue : "
' -
H

val = queuel[front];
fronts++;

(front > rear)
rear++; front = rear = -1;

queue[rear]

wval;

3. Write a C program to implement a circular queue using dynamic arrays.

. scanf("%d",&item);
MAX 1@ insert(item);
cqueue_arr[MAX] ; 5
printf("\r leted is %d\n",del());

printf("\nEl is %d\n",peek());

display();

3
exit(1);
isFull(); : printf("\nWro
main(

choice,item; o;
(1)
insert(item)
printf{" .
printF({ (isFull())
printf (" =
printF{" \ H printf(

(choice)

rear=e;

rear=rear+l;
cqueue_arr[rear]=item

del()
isFull()
item;
(isEmpty()) ((front==e && rear==MAX-1) || (front==rear+1))

printFf(
exit(1l);

X

item=cqueue_arr[front] peek()
(front==rear)

{ (isEmpty())
front=-1;
rear=-1; printf (" \nQue

exit(1l);
(Ffront==MAX-1)

front=e; cqueue_arr[front];

front=Ffront+1; display()
item;
i
isEmpty () (isEmpty())

{

i=Front;
(front<=rear)
{
(i<=rear)
printf("2%d ",cqueue_arr[i++]);

by

{
(i<=MAX-1)

printf("%d " ,cqueue_arr[i++]);
i=e;

(i<=rear)
printf("%d ",cqueue_arr[i++]);
¥
printFf("\n");

4. Write a note on application of stacks, queues and recursion.

Stacks

o Evaluation of arithmetic expressions.
e Backtracking.

e Delimiter checking.

e Reverse a data.

e Processing function calls.

e CPU scheduling and Disk scheduling.

o Buffers, pipes i.e., when data is transferred asynchronously between two processors.
e In OS(spooling in printers, buffer for devices like keyboard).

e In networks(queues in routers/switches, mail queues).

e Variation(dequeue, priority queue).

Recursion

e TOH(Tower of Hanoi).

e GCD(Greatest Common Divisor) of two numbers.
e Ackermann function.

e Fibonacci sequence.

e Factorial of a number.

5. What is Linked List? Explain the different types of linked lists with neat diagram.

A linked list, or one-way list, is a linear collection of data elements, called nodes, where the linear
order is given by means of pointers. That is, each node is divided into two parts: the first part
contains the information of the element and the second part, called the link field or next pointer
field, contains the address of the next node in the list.

head ——| 1 |next|———»| 2 |next|— 3 | next|—*tail

Singly Linked List

head —{ null| 1 |next| prev next|le———— |prev| 3 |next}|——tail

Doubly Linked List

Circular Singly Linked List

Data next Data next Data next Data next |

Address of this node Address of this node Address of this node Address of this node

Circular Doubly Linked List

pm;ousl Data | next +—1

pruviuusl Data | next _pmiuus‘ Data | next ,pmiwal Data ‘ next

Address of this node Address of this node Address of this node Address of this node

6. Write a C function:
a) Delete the node with given ITEM in SLL.
b) Concatenating the DLL.
c) Insert rear in DLL.
d) Insert front in SLL.
e) Delete rear in CSLL.

a)

Node *prev = head;
(prev->next I= NULL &8 prev->next != n)
prev = prev->next;
(prev->next == NULL)

printf("\n Given node is not present in Linked
List™);

>

1

prev->next = prev->next->next;
free(n);

b)

struct List *merge_list(struct List *xlistl,

struct List

struct Node *handl = listl—>head;
struct Node xhand2 = list2—>head;
struct Node *tmpl, *tmp2 = NULL;
struct List *Llist32 = malloc(sizeof(struct List));
while(listl && list2 != NULL)D
i
if(ptrl—>id > ptr2—>id)
i
ptrl = list3—>head;
ptrl = ptrl—>next;
¥
else
i
ptr2 = list3-—>head;
ptr2 = ptr2—>next;
¥
¥
return list3;
¥
c)
void imsertendd(()
{
ifth——NULX))
+
create():
h — temp:
temmp 1 — hs
clse
1
create():s
temp 1l -—mext
temp-——prewv —
temp 1l — temp:
b
by

d) void insert_atfirst()

{

if (first == NULL)

{

else

create();
first = temp;

last = first;

create();

temp->next = first;

*List2)

= termp:
temp 1 3

first = temp;

DeleteLast(Node** head)

Node current *head, *temp = *head,
*previous
(*head == NULL)
€

rintFC ANl

(current-:> current)

*head = NUL
(current->next *head)

previous = current
curr

