
SCHEME

1a. What is a tree? With suitable examples, define: i)Level of binary tree, ii)Degree of

the tree, iii)Ancestors, iv)Complete binary tree, v)Skewed binary tree

A tree is a non-linear data structure defined as a collection of objects or entities known as

nodes that are linked together to represent or simulate hierarchy.

i) In a tree, each step from top to bottom is called as level of a tree. The level count

starts with 0 and increments by 1 at each level or step.

ii) The total number of children of a node is the degree of a node. The number of

edges arriving at that node is called the in-degree of a node. The number of edges

leaving that node is the out-degree of a node.

iii) Any node y on the (unique) path from root r to node n is an ancestor of node n.

Every node is an ancestor of itself.

iv) A binary tree is a special type of tree in which every node or vertex has either no

child node or one child node or two child nodes. A binary tree is an important

class of a tree data structure in which a node can have at most two children.

v) A complete binary tree is a binary tree in which all the levels are completely filled

except possibly the lowest one, which is filled from the left.

b. What are the advantages of the threaded binary tree over binary tree? Explain he

construction of threaded binary tree for 10, 20, 30, 40 and 50.

o No need for stacks or recursion: Unlike binary trees, threaded binary trees do not

require a stack or recursion for their traversal.

o Optimal memory usage: Another advantage of threaded binary tree data structure is

that it decreases memory wastage. In normal binary trees, whenever a node’s left/right

pointer is NULL, memory is wasted. But with threaded binary trees, we are

overcoming this problem by storing its inorder predecessor/successor.

o Time complexity: In-order traversal in a threaded binary tree is fast because we get

the next node in O(1) time than a normal binary tree that takes O(Height). But

insertion and deletion operations take more time for the threaded binary tree.

o Backward traversal: In a double-threaded binary tree, we can even do a backward

traversal.

2. Design, develop and implement a menu driven program in C for the following

operations on Binary Search Tree(BST) of integers,

i) Create a BST of N integers: 6, 9, 5, 2, 8, 15, 24, 14, 7, 8, 5, 2

ii) Traverse the BST in Inorder, Preorder and Postorder

iii) Search the BST for a given element(KEY) and report the appropriate message

iv) Exit.

#include <stdio.h>

#include <stdlib.h>

int flag=0;

typedef struct BST

{

 int data;

 struct BST *lchild,*rchild;

} node;

void insert(node *, node *);

void inorder(node *);

void preorder(node *);

void postorder(node *);

node *search(node *, int, node **);

void main()

{

 int choice;

 int ans =1;

 int key;

 node *new_node, *root, *tmp, *parent;

 node *get_node();

 root = NULL;

 printf("\nProgram For Binary Search Tree ");

 do

 {

 printf("\n1.Create");

 printf("\n2.Search");

 printf("\n3.Recursive Traversals");

 printf("\n4.Exit");

 printf("\nEnter your choice :");

 scanf("%d", &choice);

 switch (choice)

 {

 case 1:

 do

 {

 new_node = get_node();

 printf("\nEnter The Element ");

 scanf("%d", &new_node->data);

 if (root == NULL)

 root = new_node;

 else

 insert(root, new_node);

 printf("\nWant To enter More Elements?(1/0)");

 scanf("%d",&ans);

 } while (ans);

 break;

 case 2:

 printf("\nEnter Element to be searched :");

 scanf("%d", &key);

 tmp = search(root, key, &parent);

 if(flag==1)

 {

 printf("\nParent of node %d is %d", tmp->data, parent->data);

 }

 else

 {

 printf("\n The %d Element is not Present",key);

 }

 flag=0;

 break;

 case 3:

 if (root == NULL)

 printf("Tree Is Not Created");

 else

 {

 printf("\nThe Inorder display :");

 inorder(root);

 printf("\nThe Preorder display : ");

 preorder(root);

 printf("\nThe Postorder display : ");

 postorder(root);

 }

 break;

 }

 while(choice!=4);

 }

}

node *get_node()

{

 node *temp;

 temp = (node *) malloc(sizeof(node));

 temp->lchild = NULL;

 temp->rchild = NULL;

 return temp;

}

void insert(node *root, node *new_node)

{

 if (new_node->data < root->data)

 {

 if(root->lchild==NULL)

 root->lchild=new_node;

 else

 insert(root->lchild, new_node);

 }

 if (new_node->data > root->data)

 {

 if (root->rchild == NULL)

 root->rchild = new_node;

 else

 insert(root->rchild, new_node);

 }

}

node *search(node *root, int key, node **parent)

{

 node *temp;

 temp = root;

 while (temp != NULL)

 {

 if (temp->data == key)

 {

 printf("\nThe %d Element is Present", temp->data);

 flag=1;

 return temp;

 }

 *parent = temp;

 if (temp->data > key)

 temp = temp->lchild;

 else

 temp = temp->rchild;

 }

 return NULL;

}

void inorder(node *temp)

{

 if (temp != NULL)

 {

 inorder(temp->lchild);

 printf("%d\t", temp->data);

 inorder(temp->rchild);

 }

}

void preorder(node *temp)

{

 if (temp != NULL)

 {

 printf("%d\t", temp->data);

 preorder(temp->lchild);

 preorder(temp->rchild);

 }

}

void postorder(node *temp)

{

 if (temp != NULL)

 {

 postorder(temp->lchild);

 postorder(temp->rchild);

 printf("%d\t", temp->data);

 }

}

5. Briefly explain basic operations that can be performed on a file. Explain different

types of file organisation.

Types of file organisations are:

i) Sequential Organization: A sequentially organized file stores the records in the

order in which they were entered. Sequential files can be read only sequentially,

starting with the first record in the file. Sequential file organization is the most basic

way to organize a large collection of records in a file.

Features:

 Records are written in the order in which they are entered

 Records are read and written sequentially

 Deletion or updation of one or more records calls for replacing the original file

with a new file that contains the desired changes

 Records have the same size and the same field format

 Records are sorted on a key value

 Generally used for report generation or sequential reading

Advantages:

 Simple and easy to Handle

 No extra overheads involved

 Sequential files can be stored on magnetic disks as well as magnetic tapes

 Well suited for batch– oriented applications

Disadvantages:

 Records can be read only sequentially. If ith record has to be read, then all the i–1

records must be read

 Does not support update operation. A new file has to be created and the original file has

to be replaced with the new file that contains the desired changes

 Cannot be used for interactive applications

ii) Relative File Organization: If the records are of fixed length and we know the base

address of the file and the length of the record, then any record i can be accessed

using the following formula:

 Address of ith record = base_address + (i–1) * record_length

Consider the base address of a file is 1000 and each record occupies 20 bytes, then the address

of the 5th record can be given as:

 1000 + (5–1) * 20

 = 1000 + 80

 = 1080

Features:

 Provides an effective way to access individual records

 The record number represents the location of the record relative to the beginning of the

file

 Records in a relative file are of fixed length

 Relative files can be used for both random as well as sequential access

 Every location in the table either stores a record or is marked as FREE

Advantages:

 Ease of processing

 If the relative record number of the record that has to be accessed is known, then the

record can be accessed instantaneously

 Random access of records makes access to relative files fast

 Allows deletions and updations in the same file

 Provides random as well as sequential access of records with low overhead

 New records can be easily added in the free locations based on the relative record

number of the record to be inserted

 Well suited for interactive applications

Disadvantages:

 Use of relative files is restricted to disk devices

 Records can be of fixed length only

 For random access of records, the relative record number must be known in advance

iii) Indexed Sequential File Organization

Features:

 Provides fast data retrieval

 Records are of fixed length

 Index table stores the address of the records in the file

 The ith entry in the index table points to the ith record of the file

 While the index table is read sequentially to find the address of the desired record, a

direct access is made to the address of the specified record in order to access it randomly

 Indexed sequential files perform well in situations where sequential access as well as

random access is made to the data

Advantages:

 The key improvement is that the indices are small and can be searched quickly, allowing

the database to access only the records it needs

 Supports applications that require both batch and interactive processing

 Records can be accessed sequentially as well as randomly

 Updates the records in the same file

Disadvantages:

 Indexed sequential files can be stored only on disks

 Needs extra space and overhead to store indices

 Handling these files is more complicated than handling sequential files

 Supports only fixed length records.

4a. What is collision? What are the methods to resolve collision? Explain linear probing

with an example.

Situation of collision occurs when more than one keys (hash functions) map to the same

location of hashes. In this situation, two or more data elements qualify to be mapped to the

same location in hash table.

Collision resolution can be done using two techniques:

1. Open Addressing

2. Chaining

Open Addressing: In this technique a hash table with per-identified size is considered. All

items are stored in the hash table itself. In addition to the data, each hash bucket also maintains

the three states: EMPTY, OCCUPIED, DELETED. While inserting, if a collision occurs,

alternative cells are tried until an empty bucket is found. For which one of the following

technique is adopted.

 1.Liner Probing(this is prone to clustering of data + Some other constrains)

 2.Quadratic probing

 3.Double hashing(in short in case of collision another hashing function is used with the

key value as an input to identify where in the open addressing scheme the data should

actually be stored.)

Chaining: Open Hashing, is a technique in which the data is not directly stored at the hash key

index (k) of the Hash table. Rather the data at the key index (k) in the hash table is a pointer to

the head of the data structure where the data is actually stored. In the most simple and common

implementations the data structure adopted for storing the element is a linked-list.

Linear Probing:

Suppose we have a list of size 20 (m = 20). We want to put some elements in linear probing

fashion. The elements are {96, 48, 63, 29, 87, 77, 48, 65, 69, 94, 61}

4b. Write a C function for insertion sort. Sort the following list using insertion sort.

50,30,10,60,40,20,60.

void insertionSort(element all, int n)

 {

 int j;

 for (j = 2i j <= n : j++)

 {

 element temp = a[j];

 insert (temp, a, j-1);

 }

 }

j [10] [20] [30] [40] [50] [60] [70]

- 50 30 10 70 40 20 60

20 30 50 10 70 40 20 60

30 10 30 50 70 40 20 60

40 10 30 50 70 40 20 60

50 10 30 40 50 70 20 60

60 10 20 30 40 50 70 60

70 10 20 30 40 50 60 70

6. Write a C function for BFS and DFS, show BFS and DFS traversal for the graph

given below. Also give the adjacency matrix and adjacency list representation.

3. Construct:

i) Binary Search Tree: 100, 85, 45, 55, 110, 20, 70, 65, 113, 145, 132, 96. Also give in-

oder, pre-order and post-order traversal.

ii) Binary Tree:

Preorder: A, B, D, E, F, C, G, H, L, J, K

Inorder: D, B, F, E, A, G, C, L, J, H, K

