

Construct M5 for a ($b \cup \varepsilon$). To concatenate FSM M1 to M4, connect each final state of M1 to M4 via ε-transitions. Set start state of M5 to start state of M1. Set accepting state of M5 to accepting states of M4. Make the accepting states of M1 to non-accepting in M5.

Construct M6 for a (b ∪ ε)b following same steps as above for concatenation. Since state numbers are getting repeated, we will rename all states to 6_0, 6_1, ….

Construct M7 to accept Kleene closure of RE accepted by M6 (a (b \cup ε)b)*. Create new start state and make it accepting. Connect to existing start sate of M6 via εtransition. Connect each accepting state of M6 to start state of M6 via ε-transition.

2 (a) State and prove pumping lemma for regular languages. Prove that a^nb^{2n} : $n \ge 1$ is not [05] CO3 L2

regular.

Solution:

For the language to be proved that it is regular, for any string of form $w = xyz$, 3 conditions must hold.

- $|xy| \le k$, i.e. k-1 characters can be read without revisiting any states, but kth character must take DFSM M to a state it has visited before.
- $y \neq \varepsilon$: Since M is deterministic, no transitions on ε
- $\forall q \ge 0$ (xy^qz $\in L$) : y can be pumped (q = 0 or q>1). The resulting string should be in L.

For a string a^kb^{2k} , $|w| = 3k$, So $|w|$ is $> k$. Since |xy| should be less than or equal to k, let $|xy| = a^k$ Since $y \neq \varepsilon$, let us assign $x = \varepsilon$ and $y = a^k$ Now, let us pump y, 2 times.

We get $a^{k+2}b^{2k}$. Number of b's is no longer twice the number of a's, hence we prove that the language is not regular.

Let's take k=1

After pumping y 2 times

Since the string aabb $\notin L(a^n b^{2n})$

(b) Convert the following FSM into a regular expression. Show steps.

Ans: In the above DFSM, D is a dead state and can be removed. The starting state A has an incoming transition, so we will create a new start state and connect the new start to existing start state via ε-transition.

There is only one final state but it has an outgoing transition. So, we create a new accepting state and connect the existing final state, E, to the new accepting state via εtransition. Make E as non-accepting.

 $[05]$ $CO2$ $L3$

Rip B

There is a transition from A to E via B. There is also a transition from E to E via B. We replace both.

Rip E

We use the formula to get regular expression from A to f $R(A,f) = R(A,E) R(E,E) * R(E,f) = 11 (11) * \varepsilon = 11(11) *$

Rip A $R(s,f) = R(s,A)R(A,A)^*R(A,f) = \varepsilon.(00)^* 11(11)^* = .(00)^* 11(11)^*$

3 (a) Define CFG. Write CFG for the following languages. Show derivation for given strings. (i) All strings over $\{a,b\}$ that are even or odd palindromes., $w = ababa$, w=baab

(ii) $L = \{a^{2n}b^n : n \ge 0\}$, $w = aaaabb$

(iii) $L = \{w \in \{a,b\}^* : \#_a(w) = \#_b(w) \}$, w = abab

Context Free Language (CFG) is a quadruple (V, Σ, R, S) where

- V is the rule alphabet which contains non-terminals (symbols that are used in the grammar, but do not appear in the strings of the language and terminals.
- Σ (the set of terminals) is a subset of V.
- R(the set of rules) is a finite subset of $(V \Sigma) \times V^*$
- S(the start symbol) can be any element of V- Σ

Each rule must have a single non-terminal in the L.H.S. It must have a R.H.S.

i) Even or odd palindromes

 $S \rightarrow aSa \mid bSb \mid a \mid b \mid \varepsilon$ $G = (\{S,a,b\}, \{a,b\}, \{S \rightarrow aSa, S \rightarrow bSb, S \rightarrow a, S \rightarrow b, S \rightarrow \epsilon\}, S)$ $S \rightarrow a$ and $S \rightarrow b$ allows for odd length palindromes and $S \rightarrow \varepsilon$ allows for even length palindromes.

Derivation for w = ababa $S \rightarrow aSa \Rightarrow abSba \Rightarrow ababa$

Derivation for $w =$ baab S⇒bSb ⇒baSab⇒basab⇒baab

ii) $L = \{a^{2n}b^n : n \ge 0\}$, w = aaaabb $L = \{\epsilon, aab, aaaabb, ...\}$

> S → aaSb | ε $G = (\{S,a,b\}, \{a,b\}, \{S \rightarrow aaSb, S \rightarrow \varepsilon\}, S)$

For every b, there are twice the number of a's and they have to be generated in tandem.

Derivation for $w =$ aaaabb

S⇒aaSb⇒aaaaaSbb⇒aaaaaebb⇒aaaaabb

iii)
$$
L = {w \in {a,b}^* : \#_a(w) = \#_b(w)}
$$
, $w = abab$

There can be ab, ba, i.e for every a there is a b, but the order does not matter. We can have ε also.

S →aSb | bSa | ε

 $G = (\{S,a,b\}, \{a,b\}, \{S \rightarrow aSb, S \rightarrow bSa, S \rightarrow \varepsilon\}, S)$

Derivation for w = abab S⇒aSb⇒a**bSa**b⇒ab**a**b⇒abab

(b) For the given grammar, draw parse tree for $w = 100101$ $S \rightarrow 0S1$ | 10 | SS

 $[02]$ $CO3$ L₂

The regular languages are closed under Union, Concatenation and Kleene Star. The regular languages are closed under complement, intersection, difference, reversal and substitution.

In order to prove that L∩M is regular, we need to prove that it is closed under complement and union.

 $L \cap M = \neg \neg (L \cap M) = \neg (\neg L \cup \neg L)$

Proof that regular languages are closed under union

The proof for regular languages are closed under union is by construction. Let's take a regular expression a \cup b. We first construct FSM M₁ and M₂ to accept the primitives a and b.

According to Kleene's theorem, for union of two languages that are regular and it's DFSM's, $M_1 = (k_1, \Sigma, \delta_1, s_1, A_1)$ and $M_2 = (k_2, \Sigma, \delta_2, s_2, A_2)$, we construct a new FSM, $M_3 = (k_3, \Sigma, \delta_3, s_3, A_3)$ such that $L(M_3) = L(M_1) \cup L(M_2)$. We rename states of M₁ and M₂ such that $k_1 \cap k_2 = \Phi$.

Create a new start state s₃ and connect the start states of M_1 and M_2 via ε transitions. So M₃ = ({s₃} ∪ k₁ ∪ k₂, Σ , δ ₃, s₃, A₁ ∪ A₂) where δ ₃ = δ ₁ ∪ δ ₂ ∪ {(s₃, ϵ), s₁) \cup {(s₃, ϵ), s₂).

So for $L(M_3) = a \cup b$, we get the machine where $M_3 = (\{s3, s1, s2, f1,f2\}, \{a,b\})$ ${((s3,\varepsilon),s1), ((s3,\varepsilon),s2), ((s1,a),f1), ((s2,b),f2)},$ s3, {f1,f2}.

Proof that Regular Languages are closed under complement

If L is a regular language, there exists a DFSM $M_1 = (k, \Sigma, \delta, s, A)$ that accepts L. The complement of L, \neg L will be accepted by M₂ = (k, Σ, δ, s, k-A).

Any NDFSM has to be converted to an equivalent DFSM, then the accepting states have to be swapped with the non-accepting states.

For example, consider that language L that accepts strings that begin with 'ab' over the alphabet, $\Sigma = \{a,b\}$. The following DFSM, M = $(\{q0, q1, q2, q3\}, \{a,b\})$, ${((q0,a),q1), ((q0,b),q3), ((q1,a),q3), ((q1,b),q2), ((q2,a),q2), ((q2,b),q2),}$ $((q3,a),q3), ((q3,b),q3)$, $q0, {q2}$

The following DFSM accepts the complement of L , $\neg L(M)$

Hence, we proved the regular languages are closed under complement. The Accepting states are k-A.

The following DFSM, not $M = (\{q0, q1, q2, q3\}, \{a,b\}, \{((q0,a),q1), ((q0,b),q3),$ $((q1,a),q3), ((q1,b),q2), ((q2,a),q2), ((q2,b),q2), ((q3,a),q3), ((q3,b),q3)$, q0, ${q0,q1,q3}$

Since regular languages are closed under union and complement and L \cap M = ¬ ¬ $(L \cap M) = \neg (\neg L \cup \neg L)$, regular languages are closed under intersection.

Proof that Regular Languages are closed under Difference

Using set theory, we can write,

 $L - M = L \cap \neg M$

Since we have proved that regular languages are closed under complement and intersection, it is thus proved that regular languages are also closed under difference.

 $[7]$ $|CO3|$ L3

7(a) Define regular grammar. Write regular grammar for the following languages.

(i) Strings of a's and b's not containing **aab** as a substring.

(ii) Strings of 0's and 1's ending with 1101.

A regular grammar is defined as $G = (V, \Sigma, R, S)$

V: The rule alphabet which contains non-terminals (symbols that are used in the grammar but do not appear in strings in the language) and terminals(symbols that can appear in strings generated by G).

 Σ : (the set of terminals) is the subset of V.

R : (the set of rules) is a finite set of rules of the form $X \rightarrow Y$

S : the start symbol which is a non-terminal.

In regular grammar there are 2 rules:

1. L.H.S. is a non-terminal

2. R.H.S. is either a ε or a single terminal or a single terminal followed by a single

non-terminal.

(i) Let's draw an FSM for strings not containing aab as a substring. The dead state C need not be considered when writing grammar.

produces more than one parse tree.

CO PO Mapping

