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Answer any FIVE FULL Questions MARKS CO RBT 

1 (a) Convert the following DFSM into a regular expression. Show steps. 

 
Remove q3 because it is a dead state 

q0 is the start state and it has an incoming transition so create a new start state. Connect 

new start state to existing start state via ε – transition 

There is more than one final state. So, create a new final state. Connect q0, q1 and q2 to 

new final state via ε-transitions. Make the existing final states as non-accepting. 

 
Rip q1 

There is a path from q0-q1-p2, q0-a1-f.  We will remove q1 and using the formula 

R(p,q) = R(p, rip) R(rip, rip)* R(rip, q), rewrite RE from q0 to q2 and q0 to f. 

 
 

 

[6] CO2 L3 



 

Rip q2 

There is a path from q0 to f via q2.  We rewrite that path as bb*a.  Already there is a 

path from q0 to f.  Hence bb*a will be taking a union with the existing RE. 

There is also a path from q0 via q2 back to q0 

 
Rip q0 

R(s,f) = R(s, q0) R(q0,q0)* R(q0,f) 

           = ε (a ∪ bb*aa )* (ε ∪ bb* ∪ bb*a) 
            = (a ∪ bb*aa )* (ε ∪ bb* ∪ bb*a) 

 

 
 

   (b) Construct an NDFSM using Kleene’s theorem for (a (b ∪ ε) b)*. Show steps. 
Construct FSM for primitive types 
Let M1 accept L= {a} 

 
Let M2 accept L = {b} 

 
Let M3 accept L = {ε} 
 

 
Construct M4 for (b ∪ ε).  A new start state is created and connecting to existing 
start states to machines M2 and M3 that accept b and ε respectively.  The 
accepting states of M2 and M3 are the accepting states of M4. 
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Construct M5 for a (b ∪ ε).  To concatenate FSM M1 to M4, connect each final state 
of M1 to M4 via ε-transitions.  Set start state of M5 to start state of M1.  Set 
accepting state of M5 to accepting states of M4. Make the accepting states of M1 to 
non-accepting in M5. 

 
 
Construct M6 for a (b ∪ ε)b following same steps as above for concatenation. 
Since state numbers are getting repeated, we will rename all states to 6_0, 6_1, …. 

 
Construct M7 to accept Kleene closure of RE accepted by M6 (a (b ∪ ε)b)*.  Create 
new start state and make it accepting.  Connect to existing start sate of M6 via ε-
transition.  Connect each accepting state of M6 to start state of M6 via ε-transition. 

 
 
 

2 (a) State and prove pumping lemma for regular languages. Prove that anb2n: n ≥ 1 is not [05] CO3 L2 



 

regular. 

Solution: 

For the language to be proved that it is regular, for any string of form w = xyz, 3 

conditions must hold. 

• |xy|≤ k, i.e. k-1 characters can be read without revisiting any states, but kth 

character must take DFSM M to a state it has visited before. 

• y ≠ ε  : Since M is deterministic, no transitions on ε 

• ∀q ≥ 0 (xyqz ∈ L) : y can be pumped (q = 0 or q>1).  The resulting string should 

be in L. 

 

For a string akb2k, |w| = 3k, So |w| is > k. 

Since |xy| should be less than or equal to k, let |xy| = ak 

Since y ≠ ε, let us assign x= ε and y = ak 

Now, let us pump y, 2 times. 

We get ak+2b2k. Number of b’s is no longer twice the number of a’s, hence we prove that 

the language is not regular. 

Let’s take k=1 

ε a bb 

x y z 

 

After pumping y 2 times 

ε aa bb 

x y z 

 

Since the string aabb ∉ L(anb2n) 
 

 

   (b)  Convert the following FSM into a regular expression.  Show steps. 

 
Ans: In the above DFSM, D is a dead state and can be removed.  The starting state A 

has an incoming transition, so we will create a new start state and connect the new start 

to existing start state via ε-transition.   

There is only one final state but it has an outgoing transition.  So, we create a new 

accepting state and connect the existing final state, E, to the new accepting state via ε-

transition.  Make E as non-accepting. 
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Rip C. 

We rip C by replacing the transition from A to A via C.  

 
Rip B 

There is a transition from A to E via B. There is also a transition from E to E via B.  

We replace both. 

 
Rip E 

We use the formula to get regular expression from A to f 

R(A,f) = R(A,E) R(E,E)*R(E,f) =11 (11)*ε = 11(11)* 

 
Rip A 

R(s,f) = R(s,A)R(A,A)*R(A,f) = ε.(00)* 11(11)* = .(00)* 11(11)* 

 
3 (a)  Define CFG.  Write CFG for the following languages. Show derivation for given strings. 

(i) All strings over {a,b} that are even or odd palindromes., w = ababa, w=baab 
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(ii) L= {a2nbn: n ≥ 0}, w = aaaabb 

(iii) L = {w∈ {a,b}*: #a(w) = #b(w) }, w = abab 

Context Free Language (CFG) is a quadruple (V, Σ, R, S) where  

• V is the rule alphabet which contains non-terminals (symbols that are used in the 

grammar, but do not appear in the strings of the language and terminals. 

• Σ (the set of terminals) is a subset of V. 

• R(the set of rules) is a finite subset of (V- Σ) x V*  

• S(the start symbol) can be any element of V- Σ 

Each rule must have a single non-terminal in the L.H.S.  It must have a R.H.S. 

i) Even or odd palindromes 

S → aSa | bSb | a | b | ε 

G = ({S,a,b}, {a,b}, { S → aSa, S → bSb, S → a, S → b, S → ε}, S) 

S →a and S →b allows for odd length palindromes and S →ε allows for even 

length palindromes. 

 
Derivation for w = ababa 

S⟹aSa ⟹ abSba ⟹ababa 
 
Derivation for w = baab 
S⟹bSb ⟹baSab⟹baεab⟹baab 
 

ii) L= {a2nbn: n ≥ 0}, w = aaaabb 

L = {ε, aab, aaaabb,…} 

 
S → aaSb | ε 
G = ({S,a,b},{a,b},{S→aaSb, S→ε}, S) 
 
For every b, there are twice the number of a’s and they have to be generated in 
tandem. 
 
Derivation for w = aaaabb 
S⟹aaSb⟹aaaaSbb⟹aaaaεbb⟹aaaabb 
 

iii) L = {w∈ {a,b}*: #a(w) = #b(w) }, w = abab 

 

There can be ab, ba, i.e for every a there is a b, but the order does not matter.  

We can have ε also. 

 
S →aSb | bSa | ε 

 

G = ({S,a,b}, {a,b}, { S →aSb , S → bSa, S →  ε}, S ) 

 

Derivation for w = abab 
S⟹aSb⟹abSab⟹abεab⟹abab 

 

 

   (b)  For the given grammar, draw parse tree for w = 100101 

S→ 0S1 | 10 | SS 
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4 (a) Construct PDA for L = {anb2n, n>=1}. Write computation/instantaneous 

description(ID) for w = aabbbb 

 
In this PDA, for every a, there are two b’s , so, for every a we read, we push 2 X’s. 

Upon seeing a b, we change state to enforce all a’s should precede b’s.  For every X we 

see, we pop a b. 

M = (k, Σ, Γ, Δ, s, A) 

K = {s,f}, Σ={a,b} Γ = {X} 

Δ = { ((s,a,ε),(s,xx)), ((s,b,x),(f,ε)), ((f,b,x),(f,ε)) } 

s=s, A = {f} 

w = aabbbbb 

(s,aabbbb,ε) |— (s, abbbb, XX)  |— (s, bbbb, XXXX) 

|— (f, bbb, XXX) |— (f, bb, XX) |— (f, b, X) |— (f, ε, ε) 

Since (s,aabbbb,ε) |—* (f, ε, ε) , all input symbols are consumed and stack is empty 

and state is accepting state, i.e., f∈A, the string w = aabbbb is accepted by the PDA, 
M. 
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   (b)  Define a PDA. Explain the working principle of PDA with a neat diagram. 

A pushdown automata M is a sixtuple  (k, Σ, Γ, Δ, s, A) 

• K is the finite set of states 

• Σ is the input alphabet 

• Γ is the stack alphabet 

• s ∈ k is the start state 

• A⫃k is the set of final states. 

• Δ is the transition relation. It is a finite subset of  

(k x (Σ∪{ε}) x Γ* ) x (k x Γ*) For a state k on an input and string of symbols 

to pop from top of state, it goes to state k with a string of symbols to push on 

top of stack. 
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PDA reads input from input tape.  There are a finite number of states and it makes 
use of a stack.   

 
5  Define and construct PDA for L= {anbnambm: n,m ≥ 1}.  Write 

computation/instantaneous description for w = abaabb 

 

 
In this PDA, strings accepted are {abab, aabbab, aaabbbaabb, …} 

Strings that are not accepted are {ε, ab, aaabbabb, …} 

 

Since n and m may be different values, we introduce a marker initially to keep track of 

when anbn has been read.  We would reach the marker if the first part of the string is of 

the form anbn. 

 Once we encounter the first a in am, we pop the marker and replace it with a. 

All subsequent a’s are pushed. Upon seeing b’s, a’s are popped. 

If the string is ambm, stack will be empty in state f. 

 

M = (k, Σ, Γ, Δ, s, A) 

k = { s, q, t, m, f } 

Σ = {a,b} 

Γ = {Z,a} 

s=s 

A = {f} 

 

Computation for w = abaabb 

 

(s,abaabb,ε) |— (q, abaabb, Z) |— (q, baabb, aZ), |— (t, aabb, Z) |— (m, abb, a) |— (m, 

bb, aa) |— (f, b, a) |— (f, ε, ε) 

Since (s,abaabbb,ε) |—* (f, ε, ε) , all input symbols are consumed and stack is empty 

and state is accepting state, i.e., f∈A, the string w = abaabb is accepted by the PDA, 
M. 
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6  State the closure properties of regular languages. If L and M are regular 

languages, prove that L∩M and L–M, are also regular.  

 

Closure Properties of regular languages  
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The regular languages are closed under Union, Concatenation and Kleene Star. 

The regular languages are closed under complement, intersection, difference, 

reversal and substitution. 

 

In order to prove that L∩M is regular, we need to prove that it is closed under 

complement and union. 

 

L ∩ M = ¬ ¬ ( L ∩ M) = ¬ (¬ L ∪ ¬ L) 

 

Proof that regular languages are closed under union 

  

 The proof for regular languages are closed under union is by construction.  Let’s 

take a regular expression a ∪ b.  We first construct FSM M1 and M2  to accept the 
primitives a and b. 

 
 

M1 that accepts RE  

 
M2 that accepts RE b 

 

According to Kleene’s theorem, for union of two languages that are regular and 

it’s DFSM’s, M1 = (k1, Σ, δ1, s1, A1) and M2 = (k2, Σ, δ2, s2, A2), we construct a 

new FSM, M3 = (k3, Σ, δ3, s3, A3) such that L(M3) = L(M1) ∪L(M2).  We rename 
states of M1 and M2 such that k1 ∩ k2 = Φ. 

Create a new start state s3 and connect the start states of M1 and M2 via ε-

transitions.  So M3 = ({s3} ∪ k1∪k2, Σ, δ3, s3. A1∪A2) where δ3 = δ1 ∪δ2 ∪ {(s3, 

ε), s1) ∪ {(s3, ε), s2). 
 

So for L(M3) = a ∪ b, we get the machine where M3 = ({s3, s1, s2, f1,f2}, {a,b}, 
{((s3,ε),s1), ((s3,ε),s2), ((s1,a),f1), ((s2,b),f2)}, s3, {f1,f2}. 

 
 

Proof that Regular Languages are closed under complement 

 

If  L is a regular language, there exists a DFSM M1 = (k, Σ, δ, s, A) that accepts L. 

The complement of L, ¬L will be accepted by M2 = (k, Σ, δ, s, k-A). 

Any NDFSM has to be converted to an equivalent DFSM, then the accepting 

states have to be swapped with the non-accepting states. 

For example, consider that language L that accepts strings that begin with ‘ab’ 

over the alphabet, Σ={a,b}.  The following DFSM, M = ({q0, q1, q2, q3}, {a,b}, 

{((q0,a),q1), ((q0,b),q3),  ((q1,a),q3), ((q1,b),q2), ((q2,a),q2), ((q2,b),q2), 

((q3,a),q3), ((q3,b),q3) }, q0, {q2} 



 

 
The following DFSM accepts the complement of L, ¬L(M) 

 
Hence, we proved the regular languages are closed under complement.  The 

Accepting states are k-A. 

The following DFSM, not_M = ({q0, q1, q2, q3}, {a,b}, {((q0,a),q1), ((q0,b),q3),  

((q1,a),q3), ((q1,b),q2), ((q2,a),q2), ((q2,b),q2), ((q3,a),q3), ((q3,b),q3) }, q0, 

{q0,q1,q3} 

 

 

Since regular languages are closed under union and complement and L ∩ M = ¬ ¬ 

( L ∩ M) = ¬ (¬ L ∪ ¬ L), regular languages are closed under intersection. 

 

Proof that Regular Languages are closed under Difference 

 

Using set theory, we can write,  

L – M = L ∩ ¬M 

Since we have proved that regular languages are closed under complement and 

intersection, it is thus proved that regular languages are also closed under 

difference. 

 

7(a) Define regular grammar. Write regular grammar for the following languages. 

(i)  Strings of a’s and b’s not containing aab as a substring. 

(ii) Strings of 0’s and 1’s ending with 1101. 

A regular grammar is defined as G = (V, Σ, R, S) 

V: The rule alphabet which contains non-terminals (symbols that are used in the 

grammar but do not appear in strings in the language) and terminals(symbols that 

can appear in strings generated by G). 

Σ : (the set of terminals) is the subset of V. 

R : (the set of rules) is a finite set of rules of the form X→Y 

S : the start symbol which is a non-terminal. 

In regular grammar there are 2 rules: 

1.  L.H.S. is a non-terminal 

2. R.H.S. is either a ε or a single terminal or a single terminal followed by a single 
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non-terminal. 

 

(i) Let’s draw an FSM for strings not containing aab as a substring.  The 

dead state C need not be considered when writing grammar. 

 
 

S→ ε | bS | aA 

A→ aB | bS | ε 

B → aB | ε 

   G = ({S, A, B, C, a, b}, {a, b}, { S→ ε | bS | aA, A→ aB | bS | ε, B → aB | ε }, S)  

Consider production for w = bba which is a string accepted by the grammar G as it 

does not contain substring aab. 

 

S ⟹ bS ⟹bbS ⟹bbaA ⟹bbaε ⟹bba 

 

(ii) Let’s draw an FSM for string ending in 1101 

 
S → 0S | 1S | 1A 

A → 1B 

B → 0C 

C → 1D 

D → ε 

 

G= ({S, A, B, C, D}, {0,1}, { S → 0S | 1S | 1A, A → 1B, B → 0C, C → 1D 

D → ε 

}) 

 

(b) What is ambiguous grammar? Prove that the following grammar is ambiguous for 

the string “abababa” ,     S→SbS | a 

 

A grammar, G is ambiguous iff there is at least one string in L(G) for which G 

produces more than one parse tree. 
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Since two different parse trees are possible for the grammar G for string 

w=abababa, the grammar is proved to be ambiguous. 
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(e.g., Deterministic and Non-

deterministic and Software models). 

 

CO3 

Design Grammars and Automata 

(recognizers) for different language 

classes and become knowledgeable 

about restricted models of 

Computation (Regular, Context 

Free) and their relative powers. 
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CO4 

Develop skills in formal reasoning 

and reduction of a problem to a 

formal model, with an       emphasis 

on semantic precision and 

conciseness. 

 

3,4 

2 3 2 2 - 2 - - - - - - 2 2 3 3 

CO5 

Classify a problem with respect to 

different models of Computation 
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COGNITIVE 

LEVEL 
REVISED BLOOMS TAXONOMY KEYWORDS 

L1 
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, 

when, where, etc.  

L2 
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, 

discuss, extend  

L3 
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, 

change, classify, experiment, discover.  

L4 
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, 

infer.  

L5 
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, 

discriminate, support, conclude, compare, summarize.  

 

 

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO) 
CORRELATION 

LEVELS 

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation 

PO2 Problem analysis PO8 Ethics 1 Slight/Low 

PO3 Design/development of solutions PO9 Individual and team work 2 
Moderate/ 

Medium 

PO4 
Conduct investigations of 

complex problems 
PO10 Communication 3 

Substantial/ 

High 

PO5 Modern tool usage PO11 Project management and finance  

PO6 The Engineer and society PO12 Life-long learning  

PSO1 Develop applications using different stacks of web and programming technologies 

PSO2 Design and develop secure, parallel,  distributed, networked, and digital systems 

PSO3 Apply software engineering methods to design, develop, test and manage software systems. 

PSO4 Develop  intelligent applications for business and industry 

 

 


