

USN

Internal Assessment Test 2 – Dec 2021

Sub: Automata Theory and Computability Sub Code: 18CS54 Branch: CSE

Date: 20/12/21 Duration: 90 mins Max Marks: 50 Sem/Sec: 5 A,B,C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 (a) Convert the following DFSM into a regular expression. Show steps.

Remove q3 because it is a dead state

q0 is the start state and it has an incoming transition so create a new start state. Connect

new start state to existing start state via ε – transition

There is more than one final state. So, create a new final state. Connect q0, q1 and q2 to

new final state via ε-transitions. Make the existing final states as non-accepting.

Rip q1

There is a path from q0-q1-p2, q0-a1-f. We will remove q1 and using the formula

R(p,q) = R(p, rip) R(rip, rip)* R(rip, q), rewrite RE from q0 to q2 and q0 to f.

[6] CO2 L3

Rip q2

There is a path from q0 to f via q2. We rewrite that path as bb*a. Already there is a

path from q0 to f. Hence bb*a will be taking a union with the existing RE.

There is also a path from q0 via q2 back to q0

Rip q0

R(s,f) = R(s, q0) R(q0,q0)* R(q0,f)

 = ε (a ∪ bb*aa)* (ε ∪ bb* ∪ bb*a)
 = (a ∪ bb*aa)* (ε ∪ bb* ∪ bb*a)

 (b) Construct an NDFSM using Kleene’s theorem for (a (b ∪ ε) b)*. Show steps.
Construct FSM for primitive types
Let M1 accept L= {a}

Let M2 accept L = {b}

Let M3 accept L = {ε}

Construct M4 for (b ∪ ε). A new start state is created and connecting to existing
start states to machines M2 and M3 that accept b and ε respectively. The
accepting states of M2 and M3 are the accepting states of M4.

[4] CO2 L3

Construct M5 for a (b ∪ ε). To concatenate FSM M1 to M4, connect each final state
of M1 to M4 via ε-transitions. Set start state of M5 to start state of M1. Set
accepting state of M5 to accepting states of M4. Make the accepting states of M1 to
non-accepting in M5.

Construct M6 for a (b ∪ ε)b following same steps as above for concatenation.
Since state numbers are getting repeated, we will rename all states to 6_0, 6_1, ….

Construct M7 to accept Kleene closure of RE accepted by M6 (a (b ∪ ε)b)*. Create
new start state and make it accepting. Connect to existing start sate of M6 via ε-
transition. Connect each accepting state of M6 to start state of M6 via ε-transition.

2 (a) State and prove pumping lemma for regular languages. Prove that anb2n: n ≥ 1 is not [05] CO3 L2

regular.

Solution:

For the language to be proved that it is regular, for any string of form w = xyz, 3

conditions must hold.

• |xy|≤ k, i.e. k-1 characters can be read without revisiting any states, but kth

character must take DFSM M to a state it has visited before.

• y ≠ ε : Since M is deterministic, no transitions on ε

• ∀q ≥ 0 (xyqz ∈ L) : y can be pumped (q = 0 or q>1). The resulting string should

be in L.

For a string akb2k, |w| = 3k, So |w| is > k.

Since |xy| should be less than or equal to k, let |xy| = ak

Since y ≠ ε, let us assign x= ε and y = ak

Now, let us pump y, 2 times.

We get ak+2b2k. Number of b’s is no longer twice the number of a’s, hence we prove that

the language is not regular.

Let’s take k=1

ε a bb

x y z

After pumping y 2 times

ε aa bb

x y z

Since the string aabb ∉ L(anb2n)

 (b) Convert the following FSM into a regular expression. Show steps.

Ans: In the above DFSM, D is a dead state and can be removed. The starting state A

has an incoming transition, so we will create a new start state and connect the new start

to existing start state via ε-transition.

There is only one final state but it has an outgoing transition. So, we create a new

accepting state and connect the existing final state, E, to the new accepting state via ε-

transition. Make E as non-accepting.

[05] CO2 L3

Rip C.

We rip C by replacing the transition from A to A via C.

Rip B

There is a transition from A to E via B. There is also a transition from E to E via B.

We replace both.

Rip E

We use the formula to get regular expression from A to f

R(A,f) = R(A,E) R(E,E)*R(E,f) =11 (11)*ε = 11(11)*

Rip A

R(s,f) = R(s,A)R(A,A)*R(A,f) = ε.(00)* 11(11)* = .(00)* 11(11)*

3 (a) Define CFG. Write CFG for the following languages. Show derivation for given strings.

(i) All strings over {a,b} that are even or odd palindromes., w = ababa, w=baab

[8] CO3 L3

(ii) L= {a2nbn: n ≥ 0}, w = aaaabb

(iii) L = {w∈ {a,b}*: #a(w) = #b(w) }, w = abab

Context Free Language (CFG) is a quadruple (V, Σ, R, S) where

• V is the rule alphabet which contains non-terminals (symbols that are used in the

grammar, but do not appear in the strings of the language and terminals.

• Σ (the set of terminals) is a subset of V.

• R(the set of rules) is a finite subset of (V- Σ) x V*

• S(the start symbol) can be any element of V- Σ

Each rule must have a single non-terminal in the L.H.S. It must have a R.H.S.

i) Even or odd palindromes

S → aSa | bSb | a | b | ε

G = ({S,a,b}, {a,b}, { S → aSa, S → bSb, S → a, S → b, S → ε}, S)

S →a and S →b allows for odd length palindromes and S →ε allows for even

length palindromes.

Derivation for w = ababa

S⟹aSa ⟹ abSba ⟹ababa

Derivation for w = baab
S⟹bSb ⟹baSab⟹baεab⟹baab

ii) L= {a2nbn: n ≥ 0}, w = aaaabb

L = {ε, aab, aaaabb,…}

S → aaSb | ε
G = ({S,a,b},{a,b},{S→aaSb, S→ε}, S)

For every b, there are twice the number of a’s and they have to be generated in
tandem.

Derivation for w = aaaabb
S⟹aaSb⟹aaaaSbb⟹aaaaεbb⟹aaaabb

iii) L = {w∈ {a,b}*: #a(w) = #b(w) }, w = abab

There can be ab, ba, i.e for every a there is a b, but the order does not matter.

We can have ε also.

S →aSb | bSa | ε

G = ({S,a,b}, {a,b}, { S →aSb , S → bSa, S → ε}, S)

Derivation for w = abab
S⟹aSb⟹abSab⟹abεab⟹abab

 (b) For the given grammar, draw parse tree for w = 100101

S→ 0S1 | 10 | SS

[02] CO3 L2

4 (a) Construct PDA for L = {anb2n, n>=1}. Write computation/instantaneous

description(ID) for w = aabbbb

In this PDA, for every a, there are two b’s , so, for every a we read, we push 2 X’s.

Upon seeing a b, we change state to enforce all a’s should precede b’s. For every X we

see, we pop a b.

M = (k, Σ, Γ, Δ, s, A)

K = {s,f}, Σ={a,b} Γ = {X}

Δ = { ((s,a,ε),(s,xx)), ((s,b,x),(f,ε)), ((f,b,x),(f,ε)) }

s=s, A = {f}

w = aabbbbb

(s,aabbbb,ε) |— (s, abbbb, XX) |— (s, bbbb, XXXX)

|— (f, bbb, XXX) |— (f, bb, XX) |— (f, b, X) |— (f, ε, ε)

Since (s,aabbbb,ε) |—* (f, ε, ε) , all input symbols are consumed and stack is empty

and state is accepting state, i.e., f∈A, the string w = aabbbb is accepted by the PDA,
M.

[07] CO3 L3

 (b) Define a PDA. Explain the working principle of PDA with a neat diagram.

A pushdown automata M is a sixtuple (k, Σ, Γ, Δ, s, A)

• K is the finite set of states

• Σ is the input alphabet

• Γ is the stack alphabet

• s ∈ k is the start state

• A⫃k is the set of final states.

• Δ is the transition relation. It is a finite subset of

(k x (Σ∪{ε}) x Γ*) x (k x Γ*) For a state k on an input and string of symbols

to pop from top of state, it goes to state k with a string of symbols to push on

top of stack.

[03] CO3 L2

PDA reads input from input tape. There are a finite number of states and it makes
use of a stack.

5 Define and construct PDA for L= {anbnambm: n,m ≥ 1}. Write

computation/instantaneous description for w = abaabb

In this PDA, strings accepted are {abab, aabbab, aaabbbaabb, …}

Strings that are not accepted are {ε, ab, aaabbabb, …}

Since n and m may be different values, we introduce a marker initially to keep track of

when anbn has been read. We would reach the marker if the first part of the string is of

the form anbn.

 Once we encounter the first a in am, we pop the marker and replace it with a.

All subsequent a’s are pushed. Upon seeing b’s, a’s are popped.

If the string is ambm, stack will be empty in state f.

M = (k, Σ, Γ, Δ, s, A)

k = { s, q, t, m, f }

Σ = {a,b}

Γ = {Z,a}

s=s

A = {f}

Computation for w = abaabb

(s,abaabb,ε) |— (q, abaabb, Z) |— (q, baabb, aZ), |— (t, aabb, Z) |— (m, abb, a) |— (m,

bb, aa) |— (f, b, a) |— (f, ε, ε)

Since (s,abaabbb,ε) |—* (f, ε, ε) , all input symbols are consumed and stack is empty

and state is accepting state, i.e., f∈A, the string w = abaabb is accepted by the PDA,
M.

[10] CO3 L3

6 State the closure properties of regular languages. If L and M are regular

languages, prove that L∩M and L–M, are also regular.

Closure Properties of regular languages

 [10] CO2 L3

The regular languages are closed under Union, Concatenation and Kleene Star.

The regular languages are closed under complement, intersection, difference,

reversal and substitution.

In order to prove that L∩M is regular, we need to prove that it is closed under

complement and union.

L ∩ M = ¬ ¬ (L ∩ M) = ¬ (¬ L ∪ ¬ L)

Proof that regular languages are closed under union

 The proof for regular languages are closed under union is by construction. Let’s

take a regular expression a ∪ b. We first construct FSM M1 and M2 to accept the
primitives a and b.

M1 that accepts RE

M2 that accepts RE b

According to Kleene’s theorem, for union of two languages that are regular and

it’s DFSM’s, M1 = (k1, Σ, δ1, s1, A1) and M2 = (k2, Σ, δ2, s2, A2), we construct a

new FSM, M3 = (k3, Σ, δ3, s3, A3) such that L(M3) = L(M1) ∪L(M2). We rename
states of M1 and M2 such that k1 ∩ k2 = Φ.

Create a new start state s3 and connect the start states of M1 and M2 via ε-

transitions. So M3 = ({s3} ∪ k1∪k2, Σ, δ3, s3. A1∪A2) where δ3 = δ1 ∪δ2 ∪ {(s3,

ε), s1) ∪ {(s3, ε), s2).

So for L(M3) = a ∪ b, we get the machine where M3 = ({s3, s1, s2, f1,f2}, {a,b},
{((s3,ε),s1), ((s3,ε),s2), ((s1,a),f1), ((s2,b),f2)}, s3, {f1,f2}.

Proof that Regular Languages are closed under complement

If L is a regular language, there exists a DFSM M1 = (k, Σ, δ, s, A) that accepts L.

The complement of L, ¬L will be accepted by M2 = (k, Σ, δ, s, k-A).

Any NDFSM has to be converted to an equivalent DFSM, then the accepting

states have to be swapped with the non-accepting states.

For example, consider that language L that accepts strings that begin with ‘ab’

over the alphabet, Σ={a,b}. The following DFSM, M = ({q0, q1, q2, q3}, {a,b},

{((q0,a),q1), ((q0,b),q3), ((q1,a),q3), ((q1,b),q2), ((q2,a),q2), ((q2,b),q2),

((q3,a),q3), ((q3,b),q3) }, q0, {q2}

The following DFSM accepts the complement of L, ¬L(M)

Hence, we proved the regular languages are closed under complement. The

Accepting states are k-A.

The following DFSM, not_M = ({q0, q1, q2, q3}, {a,b}, {((q0,a),q1), ((q0,b),q3),

((q1,a),q3), ((q1,b),q2), ((q2,a),q2), ((q2,b),q2), ((q3,a),q3), ((q3,b),q3) }, q0,

{q0,q1,q3}

Since regular languages are closed under union and complement and L ∩ M = ¬ ¬

(L ∩ M) = ¬ (¬ L ∪ ¬ L), regular languages are closed under intersection.

Proof that Regular Languages are closed under Difference

Using set theory, we can write,

L – M = L ∩ ¬M

Since we have proved that regular languages are closed under complement and

intersection, it is thus proved that regular languages are also closed under

difference.

7(a) Define regular grammar. Write regular grammar for the following languages.

(i) Strings of a’s and b’s not containing aab as a substring.

(ii) Strings of 0’s and 1’s ending with 1101.

A regular grammar is defined as G = (V, Σ, R, S)

V: The rule alphabet which contains non-terminals (symbols that are used in the

grammar but do not appear in strings in the language) and terminals(symbols that

can appear in strings generated by G).

Σ : (the set of terminals) is the subset of V.

R : (the set of rules) is a finite set of rules of the form X→Y

S : the start symbol which is a non-terminal.

In regular grammar there are 2 rules:

1. L.H.S. is a non-terminal

2. R.H.S. is either a ε or a single terminal or a single terminal followed by a single

[7] CO3 L3

non-terminal.

(i) Let’s draw an FSM for strings not containing aab as a substring. The

dead state C need not be considered when writing grammar.

S→ ε | bS | aA

A→ aB | bS | ε

B → aB | ε

 G = ({S, A, B, C, a, b}, {a, b}, { S→ ε | bS | aA, A→ aB | bS | ε, B → aB | ε }, S)

Consider production for w = bba which is a string accepted by the grammar G as it

does not contain substring aab.

S ⟹ bS ⟹bbS ⟹bbaA ⟹bbaε ⟹bba

(ii) Let’s draw an FSM for string ending in 1101

S → 0S | 1S | 1A

A → 1B

B → 0C

C → 1D

D → ε

G= ({S, A, B, C, D}, {0,1}, { S → 0S | 1S | 1A, A → 1B, B → 0C, C → 1D

D → ε

})

(b) What is ambiguous grammar? Prove that the following grammar is ambiguous for

the string “abababa” , S→SbS | a

A grammar, G is ambiguous iff there is at least one string in L(G) for which G

produces more than one parse tree.

[3] CO3 L3

Since two different parse trees are possible for the grammar G for string

w=abababa, the grammar is proved to be ambiguous.

CO PO Mapping

Course Outcomes

M
o
d

u
le

s

co
v
er

ed

P
O

1

P
O

2

P
O

3

P
O

4

P
O

5

P
O

6

P
O

7

P
O

8

P
O

9

P
O

1
0

P
O

1
1

P
O

1
2

P
S

O
1

P
S

O
2

P
S

O
3

P
S

O
4

CO1

Acquire fundamental understanding

of the core concepts in automata

theory and Theory of Computation

1,2,3,4,

5

2 3 - - - 2 - - - - - - - 3 3

CO2
Learn how to translate between

different models of Computation
1,2 2 3 2 2 2 2 - - - - - - - 3 3 3

S

S
S

a b a b a b a

S S

S S

S

S S

a b a b a b a

S S

S

S

(e.g., Deterministic and Non-

deterministic and Software models).

CO3

Design Grammars and Automata

(recognizers) for different language

classes and become knowledgeable

about restricted models of

Computation (Regular, Context

Free) and their relative powers.

2,3

2 3 2 2 2 2 - - - - - - 2 - 3 -

CO4

Develop skills in formal reasoning

and reduction of a problem to a

formal model, with an emphasis

on semantic precision and

conciseness.

3,4

2 3 2 2 - 2 - - - - - - 2 2 3 3

CO5

Classify a problem with respect to

different models of Computation

5
2 3 2 2 - 3 - - - - - - 3 3 3 3

COGNITIVE

LEVEL
REVISED BLOOMS TAXONOMY KEYWORDS

L1
List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

when, where, etc.

L2
summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,

discuss, extend

L3
Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,

change, classify, experiment, discover.

L4
Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,

infer.

L5
Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain,

discriminate, support, conclude, compare, summarize.

PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)
CORRELATION

LEVELS

PO1 Engineering knowledge PO7 Environment and sustainability 0 No Correlation

PO2 Problem analysis PO8 Ethics 1 Slight/Low

PO3 Design/development of solutions PO9 Individual and team work 2
Moderate/

Medium

PO4
Conduct investigations of

complex problems
PO10 Communication 3

Substantial/

High

PO5 Modern tool usage PO11 Project management and finance

PO6 The Engineer and society PO12 Life-long learning

PSO1 Develop applications using different stacks of web and programming technologies

PSO2 Design and develop secure, parallel, distributed, networked, and digital systems

PSO3 Apply software engineering methods to design, develop, test and manage software systems.

PSO4 Develop intelligent applications for business and industry

