

Internal Assessment Test 2 – Dec. 2021

Sub: Web Technologies & its Applications
Sub

Code:

15CS71/1

7CS71

Branch

:
CSE

Date: 16-12-2021 Duration: 90 min’s
Max

Marks:
50

Sem /

Sec:
7 – D OBE

Answer any FIVE FULL Questions
MAR

KS

CO RB

T

1 (a) Discuss positioning elements with examples.

Relative Positioning:

• In relative positioning an element is displaced out of its normal flow

position and moved relative to where it would have been placed.

• When an element is positioned relatively, it is displaced out of its

normal flow position and moved relative to where it would have been

placed.

• The other content around the relatively positioned element “remembers”

the element’s old position in the flow; thus the space the element would

have occupied is preserved as shown in Figure 5.4.

• As you can see in Figure 5.4, the original space for the positioned

[10] CO3 L2

<figure> element is preserved, as is the rest of the document’s flow.

• As a consequence, the repositioned element now overlaps other content:

that is, the <p> element following the <figure> element does not change to

accommodate the moved<figure>.

Absolute Positioning:

• When an element is positioned absolutely, it is removed completely from

normal flow. Thus, unlike with relative positioning, space is not left for

the moved element, as it is no longer in the normal flow.

• Its position is moved in relation to its container block.

• In the example shown in Figure 5.5, the container block is the <body>

element. Like with the relative positioning example, the moved block can

now overlap content in the underlying normal flow.

• A moved element via absolute position is actually positioned relative to

its nearest positioned ancestor container (that is, a block-level element

whose position is fixed, relative, or absolute).

• In the example shown in Figure 5.6, the <figcaption> is absolutely

positioned; it is moved 150 px down and 200 px to the left of its nearest

positioned ancestor, which happens to be its parent (the <figure>

element).

Z-Index

Looking at Figure 5.6, you may wonder what would have happened if the

<figcaption> had been moved so that it overlapped the <figure>. Each

positioned element has a stacking order defined by the z-index property (named

for the z-axis). Items closest to the viewer (and thus on the top) have a larger z-

index value, which can be seen in the first Unfortunately, working with z-index

can be tricky and seemingly counterintuitive.

First, only positioned elements will make use of their z-index. Second, as can be

seen in Figure , simply setting the z-index value of elements will not necessarily

move them on top or behind other items.

Fixed Position

The fixed position value is used relatively infrequently. It is a type of absolute

positioning, except that the positioning values are in relation to the viewport

(i.e., to the browser window). Elements with fixed positioning do not move

when the user scrolls up or down the page, as can be seen in Figure. The fixed

position is most commonly used to ensure that navigation elements or

advertisements are always visible.

Va <p>A wonderful serenity has taken possession of my …

<figure>

<figcaption>British Museum</figcaption>

</figure>

<p>When, while the lovely valley …

lue Descrip figure {

margin: 0;

border: 1pt solid #A8A8A8;

background_color: #EDEDDD;

padding: 5px;

width: 150px;

position: absolute;

top: 150px;

left: 200px;

}

figcaption {

background_color: #EDEDDD;

padding: 5px;

position: absolute;

top: 150px;

left: 200px;

}tion

absolute The element is removed from normal flow and positioned in relation to

its

nearest positioned ancestor.

fixed The element is fixed in a specific position in the window even when the

document is scrolled.

relative The element is moved relative to where it would be in the normal flow.

static The element is positioned according to the normal flow. This is the

default.

table 5.1 Position Values

2 (a) What does floating an element do in CSS? How do you float an element?

Floating Elements:

• It is possible to displace an element out of its position in the normal flow

via the CSS float property.

• An element can be floated to the left or floated to the right.

• When an item is floated, it is moved all the way to the far left or far right

of its containing block and the rest of the content is “re-flowed” around

the floated element, as can be seen in Figure 5.9.

• Notice that a floated block-level element must have a width specified; if

you do not, then the width will be set to auto, which will mean it

implicitly fills the entire width of the containing block, and there thus

will be no room available to flow content around the floated item. Also

note in the final example in Figure 5.9 that the margins on the floated

[06] CO4 L2

element are respected by the content that surrounds the floated element.

Floating within a Container:

• It should be reiterated that a floated item moves to the left or right of its

container (also called its containing block). In Figure 5.9, the containing

block is the HTML document itself so the figure moves to the left or right

of the browser window.

2 (b) Write short notes on graceful degradation and progressive enhancement.

Graceful degradation:

• With this strategy you develop your site for the abilities of current

browsers.

• For those users who are not using current browsers, we need to provide an

alternative site or pages for those using older browsers that lack the JS

[04] CO3 L2

used on the main site.

• The idea here is that the site is “degraded” (i.e., loses capability)

“gracefully” (i.e., without pop-up JavaScript error codes or without

condescending messages telling users to upgrade their browsers).

Progressive enhancement:

• The developer creates the site using CSS, JavaScript, and HTML features

that are supported by all browsers of a certain age or newer.

• The developers can now “progressively” (i.e., for each browser)

“enhance” (i.e., add functionality) to their site based on the capabilities

of the users’ browsers.

• For instance, users using the current version of Opera and Chrome might

see the fancy HTML5 color input form elements (since both support it at

present), users using current versions of other browsers might see a

jQuery plug-in that has similar functionality, while users of IE 7 might

just see a simple text box.

3 (a) Explain Grid systems in CSS with examples.

• Grid systems make it easier to create multicolumn layouts.

• There are many CSS grid systems; some of the most popular are

A. Bootstrap (twitter.github.com/bootstrap),

B. Blueprint (www.blueprintcss.org), and

C. 960 (960.gs).

• Print designers typically use grids as a way to achieve visual uniformity

in a design.

• In print design, the very first thing a designer may do is to construct, for

instance, a 5- or 7- or 12-column grid in a page layout program like

InDesign or Quark Xpress.

• CSS frameworks provide similar grid features. The 960 framework uses

either a 12- or 16-column grid. Bootstrap uses a 12-column grid.

Blueprint uses a 24-column grid.

• The grid is constructed using <div> elements with classes defined by the

framework.

• In bootstrap and 960, elements are laid out in rows; elements in a rows;

elements in a row will span from 1 to 12 columns.

• In 960 system, a row is terminated with < div class=”clear”></div>.

• In bootstrap sysem, content must be placed within the <div class= row“>

row container.

Using 960 grid

<head>

<link rel="stylesheet" href="reset.css" />

<link rel="stylesheet" href="text.css" />

<link rel="stylesheet" href="960.css" />

</head>

<body>

[06] CO4 L2

<div class="container_12">

<div class="grid_2">

left column

</div>

<div class="grid_7">

main content

</div>

<div class="grid_3">

right column

</div>

<div class="clear"></div>

</div>

</body>

Using the Bootstrap grid

<head>

<link href="bootstrap.css" rel="stylesheet">

</head>

<body>

<div class="container">

<div class="row">

<div class="col-md-2">

left column

</div>

<div class="col-md-7">

main content

</div>

<div class="col-md-3">

right column

</div>

</div>

</div>

</body>

• Both of these frameworks allow columns to be nested, making it quite

easy to construct the most complex of layouts.

• Bootstrap provides more than just a grid system.

• It also has a wide variety of very useful additional styling classes such as

classes for drop-down menus, fancy buttons and form elements and

integration with a variety of JQuery plug-ins.

3 (b) Write short notes on CSS Layout.

• One of the main problems faced by web designers is that the size of the

screen used to view the page can vary quite a bit.

• Some users will visit a site on a 21-inch wide screen monitor that can

display 1920 × 1080 pixels (px); others will visit it on an older iPhone

with a 3.5 screen and a resolution of 320 × 480 px.

[04] CO2 L2

• Users with the large monitor might expect a site to take advantage of the

extra size; users with the small monitor will expect the site to scale to the

smaller size and still be usable.

• Satisfying both users can be difficult; the approach to take for one type

of site content might not work as well with another site with different

content.

• Basic models:

A. Fixed Layout:

• In a fixed layout, the basic width of the design is set by the designer.

• A common width used is something in the 960 to 1000 pixel range,

which fits nicely in the common desktop monitor resolution (1024 ×

768).

• This content can then be positioned on the left or the center of the

monitor.

• Fixed layouts are created using pixel units, typically with the entire

content within a <div> container whose width property set to some

width.

<body>

<div id="wrapper">

<header>

...

</header>

<div id="main">

...

</div>

<footer>

...

</footer>

</div>

</body>

div#wrapper {

width: 960px;

background_color: tan;

}

The advantage of a fixed layout is that

a) It is easier to produce and generally has a predictable visual result.

b) It is also optimized for typical desktop monitors.

Fixed layouts have drawbacks:

c) For larger screens, there may be an excessive amount of blank space to

the left and/or right of the content.

d) Much worse is when the browser window shrinks below the fixed width;

the user will have to horizontally scroll to see all the content.

B. Liquid layout:

• In this approach, widths are not specified using pixels, but percentage

values.

• Percentage values in CSS are a percentage of the current browser width,

so a layout in which all widths are expressed as percentages should adapt

to any browser size.

Advantage of a liquid layout

• It adapts to different browser sizes, so there is neither wasted white space

nor any need for horizontal scrolling.

Disadvantage of a liquid layout

• Liquid layouts can be more difficult to create because some elements,

such as images, have fixed pixel sizes.

• Another problem will be noticeable as the screen grows or shrinks

dramatically, in that the line length (which is an important contributing

factor to readability) may become too long or too short.

4 (a) Write a javascript code that displays text “VTU BELGAVI” with increasing font

size in the interval of 100 ms in blue color, when the font size reaches 50 pt it

should stop.

<!DOCTYPE HTML>

<html>

<head>

<title>program</title>

</head>

[06] CO3 L2

<body>

<p id="demo"></p>

<script>

var var1 = setInterval(inTimer, 1000);

var fs = 5;

var ids = document.getElementById("demo");

function inTimer() {

ids.innerHTML = 'TEXT

GROWING'; ids.setAttribute('style',

"font-size: " + fs + "px; color: red");

fs += 5;

if(fs >= 50){

clearInterval(var1);

var2 = setInterval(deTimer, 1000);

}

}

function deTimer() {

fs -= 5;

ids.innerHTML = 'TEXT

SHRINKING'; ids.setAttribute('style',

"font-size: " + fs + "px; color: blue");

if(fs === 5){

clearInterval(var2);

}

}

</script>

</body>

</html>

6 (a) Discuss the advantages and disadvantages of client side scripting.

There are many advantages of client-side scripting:

■ Processing can be offloaded from the server to client machines, thereby

reducing the load on the server.

■ The browser can respond more rapidly to user events than a request to a

remote server ever could, which improves the user experience. JavaScript

can interact with the downloaded HTML in a way that the server cannot,

creating a user experience more like desktop software than simple HTML

ever could.

The disadvantages of client-side scripting are mostly related to how

[05]

CO2

L2

programmers use JavaScript in their applications. Some of these include:

■ There is no guarantee that the client has JavaScript enabled, meaning

any required functionality must be housed on the server, despite the

possibility that it could be offloaded.

■ The idiosyncrasies between various browsers and operating systems

make it difficult to test for all potential client configurations. What works

in one browser, may generate an error in another.

■ JavaScript-heavy web applications can be complicated to debug and

maintain. JavaScript has often been used through inline HTML hooks that

are embedded into the HTML of a web page. Although this technique has

been used for years, it has the distinct disadvantage of blending HTML and

JavaScript together, which decreases code readability, and increases the

difficulty of web development.

6 (b) Explain arrays in JavaScript with examples.

Arrays

• Arrays are one of the most used data structures, and they have been

included in JavaScript as well. Objects can be created using the new

syntax and calling the object constructor. The following code creates a

new, empty array named greetings:

 var greetings = new Array();

• To initialize the array with values, the variable declaration would look

like the following:

 var greetings = new Array("Good Morning", "Good Afternoon");

• or, using the square bracket notation:

 var greetings = ["Good Morning", "Good Afternoon"];

Accessing and Traversing an Array

• To access an element in the array you use the familiar square bracket

notation with the index to be accessed can be mentioned inside the

brackets.

 alert (greetings[0]);

• Traverse through the items sequentially.

 The following for loop quickly loops through an array, accessing the ith element

each time using the Array object’s length property to determine the maximum

valid index. It will alert “Good Morning” and “Good Afternoon” to the user.

 for (var i = 0; i < greetings.length; i++){

[05]

CO2

L2

 alert(greetings[i]);

 }

Figure illustrates an array with indexes and the corresponding values.

Modifying an Array

• To add an item to an existing array, you can use the push method.

 greetings.push("Good Evening");

• The pop method can be used to remove an item from the back of an

array.

• Additional methods that modify arrays include concat(), slice(), join(),

reverse(), shift(), and sort().

7 (a) Briefly explain responsive design in CSS with examples.

• The page “responds” to changes in the browser size that go beyond the

width scaling of a liquid layout.

• One of the problems of a liquid layout is that images and horizontal

navigation elements tend to take up a fixed size, and when the browser

window shrinks to the size of a mobile browser, liquid layouts can

become unusable.

• In a responsive layout, images will be scaled down and navigation

elements will be replaced as the browser shrinks.

[06]

CO2

L2

There are four key components that make responsive design work. They are:

1. Liquid layouts

2. Scaling images to the viewport size

3. Setting viewports via the <meta> tag

4. Customizing the CSS for different viewports using media queries

Responsive designs begin with a liquid layout, that is, one in which most

elements have their widths specified as percentages.

img

{

 max-width: 100%;

}

Setting viewports:

• A key technique in creating responsive layouts makes use of the ability

of current mobile browsers to shrink or grow the web page to fit the

width of the screen.

• The way this works is the mobile browser renders the page on a canvas

called the viewport.

<html>

<head>

<meta name="viewport" content="width=device-width" />

• Device-width sets the pixels wide as the device screen width.

• If the device has a screen that is 320px wide, the viewport width will be

320px.

Media Query

• The other key component of responsive designs is CSS media queries.

• A media query is a way to apply style rules based on the medium that is

displaying the file.

• Figure illustrates the syntax of a typical media query.

• These queries are Boolean expressions and can be added to your CSS

files or to the <link> element to conditionally use a different external

CSS file based on the capabilities of the device.

• Table is a partial list of the browser features you can examine with media

queries. Many of these features have min- and max- versions.

• Contemporary responsive sites will typically provide CSS rules for

phone displays first, then tablets, then desktop monitors, an approach

called progressive enhancement, in which a design is adapted to

progressively more advance devices.

• Instead of having all the rules in a single file, put them in separate files

and add media queries to <link> elements.

7 (b) Explain client side scripting with neat diagram

Client and Server Scripts:

The fundamental difference between client and server scripts is that in a client-

side script the code is executed on the client browser, whereas in a server-side

script, it is executed on the web server.

server-side source code remains hidden from the client as it is processed on the

server. The clients never get to see the code, just the HTML output from the

script.

[04] CO4 L2

Server-Side Script Resources

A server-side script can access any resources made available to it by the server.

These resources can be categorized as data storage resources, web services, and

software applications, as can be seen in Figure

The most commonly used resource is data storage, often in the form of a

connection to a database management system. A database management system

(DBMS) is a software system for storing, retrieving, and organizing large

amounts of data.

 8 (a) Elaborately explain DOM in JavaScript. Give examples for verbose technique.

• There needs to be some way of programmatically accessing the elements

and attributes within the HTML. This is accomplished through a

programming interface (API) called the Document Object Model

(DOM).

Nodes:

In the DOM, each element within the HTML document is called a node. If the

DOM is a tree, then each node is an individual branch.

Thus, most of the tasks that we typically perform in JavaScript involve finding a

node, and then accessing or modifying it via those properties and methods.

[10] CO4 L2

Document Object:

The DOM document object is the root JavaScript object representing the entire

HTML document.

It is globally accessible as document.

The attributes of this object include some information about the page including

• doctype and

• inputEncoding

Example:

var a = document.doctype.name

var b= document.inputEncoding

<div id= “latest”>

 <p>CMRIT</p>

</div>

var abc= document.getElementById(“latest”);

var list= document.getElementByTagName(“div”);

Element Node Object:

• The type of object returned by the method document.getElementById() is

an element node object.

• Since ID’s must be unique in an HTML document, getElementById()

returns a single node.

HTML DOM Element properties for certain tags.

Modifying a DOM element:

• Document.write() method is used to create output to the HTML page

from JS.

• Example:

Changing the HTML using innerHTML.

var lat= document.getElementById(“latest”);

var old = lat.innerHTML;

lat.innerHTML = old+ “<p> updated with JS</p>”

Output:

Cmrit

Updated with JS

A more Verbose Technique

DOM functions createTextNode(), removeChild(), and appendChild() allow us

to modify an element in a more rigorous way.

<body>

 <ul id=”list”>

 Coffee

 Tea

<button onClick=”fun()”>Click</button>

<script>

//to add a element node and textnode

function fun(){

 var node=document.createElement(“LI”);

 var textnode=document.createTextNode(“Water”);

 node.appendChild(textnode);

 document.getElementById(“list”).appendChild(node);

}

</script>

//to remove a child node

<script>

function fun(){

 var list1= document.getElementById(“list”);

 list1.removeChild(list.childNode[0]);

}

</script>

