USN					

Internal Assessment Test 2 – Dec. 2021

Sub:	ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING			Sub Code	: 18CS71	Brancl	n: CSE	,		
Date:	16/12/202								OE	BE
			Answer any FIVE F					//ARKS	CO	RBT
1	Explain th		of decision tree		Construct	the decision	1	[10]	CO2	L2
	tree for the instances given in Table below.									
	Day Outlook Temperature Humidity Wind PlayTennis									
	D1		Hot	High	Weak	No				
	D2		Hot	High	Strong	No				
	D3	the state of the s	Hot	High	Weak	Yes				
	D4		Mild	High	Weak	Yes				
	D5		Cool	Normal	Weak	Yes				
	D6	Rain	Cool	Normal	Strong	No				
	D7	The state of the s	Cool	Normal	Strong	Yes				
	D8	and the state of t	Mild	High	Weak	No				
	D9		Cool	Normal	Weak	Yes				
	D10	Rain	Mild	Normal	Weak	Yes				
	D11	Sunny	Mild	Normal	Strong	Yes				
	D12	2 Overcast	Mild	High	Strong	Yes				
	D13	3 Overcast	Hot	Normal	Weak	Yes				
	D14	Rain	Mild	High	Strong	No				
	-									
	• Dec	ision Trees ar	re a type of Supe	rvised Machi	ne Learnin	g		3 + 7		
	• The	data is contir	nuously split acc	ording to a ce	ertain paran	neter.				
	• The	tree can be e	xplained by two	entities, name	ely decisio	n nodes and lea	aves.			
	• Dec	ision Tree Le	arning is one of	the widely us	sed practica	al method for				
	indı	active inferen	ce							
	• indu	active inferen	ce is based on a	generalizatio	n from a fir	nite set of past				
	obse	ervations, exte	ending the obser	ved pattern o	r relation to	o other future				
	inst	ances or insta	nces occurring e	lsewhere						
	Answer:									
	Entropy of	Dataset = - [(9/4) log (9/14) +	- (5/14). Log	(5/14) = 0.9	941				
	Entropy(S,	outlook) = -	(5/14) * [(2/5)	$\log(2/5) + (3$	3/5) log(3/5)				
		-	4/14 * 0							
		-	(5/14) * [(2/5)	$\log(2/5) + (3)$	3/5) log(3/5	5)				
		=0.	693							
	Information	Gain(S,outle	ook) = 0.940- 0.6	693 = 0.246						

Entropy(S, Temp) = -
$$(4/14) * -1$$

- $(6/14) * [(2/6) \log(2/6) + (4/6) \log(4/6)]$
- $(4/14) * [(1/4) \log(1/4) + (3/4) \log(3/4)]$
= 0.911

Information Gain(S, Temp = 0.940 = 0.911 = 0.029

Entropy(S, Humidity) = -
$$(7/14) * [(4/7) \log(4/7) + (3/7) \log(3/7)]$$

- $(7/14) * [(6/7) \log(6/7) + (1/7) \log(1/7)]$
= 0.789

Information Gain(S, Humidity) = 0.940-0.789 = 0.151

Entropy(S, Wind) = -
$$(6/14) * (-1)$$

- $(8/14) * [(6/8) \log(6/8) + (2/8) \log(2/8)]$
= 0.892

Info Gain(S, Wind) = 0.940-0.892 = 0.048

Attribute "Outlook" has maximum info gain. Hence root of the tree will be "Outlook"

Nodes at next Level

1. "Sunny" branch

Humidity divides the subset of samples perfectly and has entropy of 0. Hence humidity will be the node at the "Sunny" branch

2. "Overcast" branch

All samples are "Yes" class. Hence a leaf node with "Yes" is at this level

3. "Rain" branch

Wind divides the subset of samples perfectly and has entropy of 0. Hence Wind will be the node at the "Rain" branch

Nodes at level 3

- 1. (Outlook=Sunny, Humidity=High) branch Leaf node "No"
- 2. (Outlook=Sunny, Humidity=Normal) branch Leaf node "Yes"
- 3. (Outlook=Rain, Wind=Weak) branch
 Leaf node "Yes"
- 4. (Outlook=Rain, Wind=Strong) branch Leaf node "No"

	[05]	GO2	1.0
2 (2) Construct the decision tree to represent the following Boolean functions:i) $A \land \neg B$ ii) $A \lor [B \land C]$	[05]	CO2	L2
i) AA¬B Johnton i) A \$4 ¬B	2.5+2.5		
A B -18 A 44 -18 T T F F (-) T F T F F (-) F T F F (-) F F T F (-)			
T B F F F F F F F F F F F F F F F F F F			
ii) A∨ [B∧ C]			
T B F OR T F B			
6 6 6 6 E			
2 (b) How a single perceptron can be used to represent the Boolean functions such as AND, OR.	[05]	CO2	L2

		2.5+2.5		
	2			
	Many values of w0, w1 and w2 possible for AND and OR nodes to represent AND and OR nodes.			
	AND Node: w0= -0.6, w1=0.5, w2=0.5			
	OR Node: $w0 = -0.4$, $w1=0.5$, $w2=0.5$			
3	Explain the back propagation algorithm. Why is it not likely to be trapped in local minima?	[7+3]	CO2	L2
		7+3		
	BACKPROPAGATION (training_example, η, n _{in} , n _{out} , n _{hidden})			
	Each training example is a pair of the form (\vec{x}, \vec{t}) , where (\vec{x}) is the vector of network input values, (\vec{t}) and is the vector of target network output values. η is the learning rate (e.g., .05). n_b is the number of network inputs, n_{bidden} the number of units in the hidden layer, and n_{out} the number of output units. The input from unit i into unit j is denoted x_{jb} and the weight from unit i to unit j is denoted w_{ji}			
	 Create a feed-forward network with n_i inputs, n_{hidden} hidden units, and n_{out} output units. Initialize all network weights to small random numbers Until the termination condition is met, Do 			
	• For each (\vec{x}, \vec{t}) , in training examples, Do			
	Propagate the input forward through the network: 1. Input the instance \overrightarrow{x} , to the network and compute the output o_u of every unit			

Propagate the errors backward through the network:			
2. For each network output unit k, calculate its error term δ_L			
$\delta_k \leftarrow o_k (1 - o_k) (t_k - o_k)$			
3. For each hidden unit h , calculate its error term δ_h			
$\delta_h \leftarrow o_h(1 - o_h) \sum_{k \in outputs} w_{h,k} \delta_k$			
4. Update each network weight w_{ji}			
$w_{ji} \leftarrow w_{ji} + \Delta \ w_{ji}$			
Where $\Delta \mathrm{w}_{\mathrm{j}i} = \eta \delta_{j} x_{i,j}$			
Large number of dimensions can provide an escape route from local minima. The sigmoid function which has small slope for large positive and negative values of linear sum also helps in avoiding local minima i most cases.			
(a) Write Gradient descent algorithm to train a linear unit along with the derivation	[05]	CO2	L
Gradient-Descent(training_examples, η)	2.5+2.5		
Each training example is a pair of the form $\langle \vec{x}, t \rangle$, where \vec{x} is the vector of input values, and t is the target output value. η is the learning rate (e.g., .05) • Initialize each w_i to some small random value	5).		
• Until the termination condition is met, Do			
 Initialize each Δw; to zero. For each ⟨x̄, t⟩ in training_examples, Do * Input the instance x̄ to the unit and compute the output o 			
* For each linear unit weight w_i , Do			
$\Delta w_i \leftarrow \Delta w_i + \eta(t-o)x_i$	1		
$\Delta w_i \leftarrow \Delta w_i + \eta(t - o)x_i$ - For each linear unit weight w_i , Do			
PROPERTY OF THE PROPERTY OF TH			
– For each linear unit weight w_i , Do $w_i \leftarrow w_i + \Delta w_i$ Derivation			
Por each linear unit weight w_i , Do $w_i \leftarrow w_i + \Delta w_i$ Derivation $\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i 2} \frac{1}{2} \sum_d (t_d - o_d)^2$ $= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2$ $= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$			
Por each linear unit weight w_i , Do $w_i \leftarrow w_i + \Delta w_i$ Derivation $\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i 2} \frac{1}{\omega} (t_d - o_d)^2$ $= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2$			
Por each linear unit weight w_i , Do $w_i \leftarrow w_i + \Delta w_i$ Derivation $\frac{\partial E}{\partial w_i} = \frac{\partial}{\partial w_i} \frac{1}{2} \sum_d (t_d - o_d)^2$ $= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2$ $= \frac{1}{2} \sum_d \frac{\partial}{\partial w_i} (t_d - o_d)^2$ $= \frac{1}{2} \sum_d 2(t_d - o_d) \frac{\partial}{\partial w_i} (t_d - o_d)$ $= \sum_d (t_d - o_d) \frac{\partial}{\partial w_i} (t_d - \vec{w} \cdot \vec{x}_d)$			

	$\Delta w_i = \eta \sum_{d \in D} (t_d - o_d) \ x_{id} $ equ. (7)			
4 (b)	Write the characteristics of the problems appropriate for solving using neural network.	[05]	CO1	L1
	ANN is appropriate for problems with the following characteristics	05 marks – one per characteristi cs		
5	Show the derivation of back propagation training rule for output unit weights.	[10]	CO2	L2
	For each training example d every weight w_{ji} is updated by adding to it Δw_{ji} $\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}} \qquad \dots \text{equ. (1)}$ where, E_d is the error on training example d, summed over all output units in the network $E_d(\vec{w}) \equiv \frac{1}{2} \sum_{k \text{ ecoulput}} (t_k - o_k)^2$	10		
	derive an expression for $\frac{\partial E_d}{\partial w_{ji}}$ in order to implement the stochastic gradient descent rule seen in Equation $\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}}$			
	notice that weight w_{ji} can influence the rest of the network only through net_j . Use chain rule to write $\frac{\partial E_d}{\partial w_{ji}} = \frac{\partial E_d}{\partial net_j} \frac{\partial net_j}{\partial w_{ji}}$ $= \frac{\partial E_d}{\partial net_j} x_{ji} \qquad \dots equ(2)$			
	Derive a convenient expression for $\frac{\partial E_d}{\partial net_j}$			

	$\frac{\partial E_d}{\partial net_j} = \frac{\partial E_d}{\partial o_j} \frac{\partial o_j}{\partial net_j} \qquadequ(3)$			
	To begin, consider just the first term in Equation (3)			
	$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} \sum_{k \in outputs} (t_k - o_k)^2$			
	The derivatives $\frac{\partial}{\partial o_j}(t_k - o_k)^2$ will be zero for all output units k except when $k = j$. We therefore drop the summation over output units and simply set $k = j$.			
	$\frac{\partial E_d}{\partial o_j} = \frac{\partial}{\partial o_j} \frac{1}{2} (t_j - o_j)^2$			
	$=\frac{1}{2}2(t_j-o_j)\frac{\partial(t_j-o_j)}{\partial o_j}$			
	$= -(t_j - o_j) \qquad \qquad \dots equ(4.)$			
	Next consider the second term in Equation (3). Since $o_j = \sigma(net_j)$, the derivative $\frac{\partial o_j}{\partial net_j}$ is just the derivative of the sigmoid function, which we have already noted is equal to $\sigma(net_j)(1 - \sigma(net_j))$. Therefore,			
	$\frac{\partial o_j}{\partial net_j} = \frac{\partial \sigma(net_j)}{\partial net_j}$			
	$= o_j(1 - o_j) \qquad \dots equ(5)$			
	Substituting expressions (4) and (5) into (3), we obtain			
	$\frac{\partial E_d}{\partial net_j} = -(t_j - o_j) \ o_j (1 - o_j) \qquad \dots equ(6)$			
	and combining this with Equations (1) and (2), we have the stochastic gradient descent rule for output units			
	$\Delta w_{ji} = -\eta \frac{\partial E_d}{\partial w_{ji}} = \eta (t_j - o_j) o_j (1 - o_j) x_{ji} \qquad \dots equ (7)$			
6(a)	Explain the various approaches for knowledge representation	[05]	CO1	L1
	Different techniques for knowledge representation Simple relational knowledge Inheritable knowledge	5marks for 4 rep technique		
	Inferential knowledge	S		
	Procedural knowledge			
6(b)	Discuss the issues in knowledge representation	[05]	CO1	L1
	 Are there any basic attributes of objects? Are there any basic relationships among objects? At what level should knowledge be represented? How should sets be represented? 	5 marks for min 5 issues		
	How should knowledge be accessed?			

CO PO Mapping

	Course Outcomes	Blooms Level	Modules	P01	P02	PO3	P04	PO5	PO6	PO7	PO8	P09	PO10	PO11	PO12	PSO1	PSO2	PSO3	PSO4
CO1	Appraise the theory of Artificial intelligence and Machine Learning	L1,L2,L3	1,2,3, 4,5	2	3	1	1	-	1	-	-	-	-	-	2	1	0	1	3
CO2	Illustrate the working of AI and ML Algorithms	L1,L2,L3	1,2,3, 4,5	2	3	1	1	-	1	-	-	-	-	-	2	1	0	1	3
CO3	Demonstrate the applications of AI and ML	L1,L2,L3	1,23,4 ,5	2	3	1	1	1	2	_	_	-	_	-	2	1	0	1	3

COGNITIVE LEVEL	REVISED BLOOMS TAXONOMY KEYWORDS
L1	List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who, when, where, etc.
L2	summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate, discuss, extend
L3	Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate, change, classify, experiment, discover.
L4	Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain, infer.
L5	Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explain, discriminate, support, conclude, compare, summarize.

PF	PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO)									
PO1	Engineering knowledge	PO7	Environment and sustainability	0	No Correlation					
PO2	Problem analysis	PO8	Ethics	1	Slight/Low					
PO3	Design/development of solutions	elopment of solutions PO9 Individual and team work								
PO4	Conduct investigations of complex problems	PO10	Communication	3	Substantial/ High					
PO5	Modern tool usage	PO11	Project management and finance							
PO6	The Engineer and society	PO12	Life-long learning							
PSO1	Develop applications using differe	nt stacks	of web and programming technologies	es						
PSO2	Design and develop secure, paralle	el, distri	buted, networked, and digital systems							
PSO3	Apply software engineering metho	ds to des	sign, develop, test and manage softwa	re sys	stems.					
PSO4										