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Date: | 27/01/2022 | Duration: |90 minutes | Max Marks: | 50 | Sem / Sec: A B&C OBE
Question 1 is compulsory and answer any six from Q.2 to Q.8 MARKS | CO |RBT
! Find the negations of the following: [0g] | COL L3
0] If all the triangles are right angled, then no triangle is equiangular.
(i) All integers are rational numbers and some rational numbers are not integers.
Determine the coefficient of [07] |CO2 L2
2 ()  xinthe expansion of [3x2 — (2/%)]%.
(ii)  xyz?inthe expansion of (x-2y+3z%)*.
3 Find whether the following argument is valid: [07] CO1 L3
No engineering student of | and Il sem. studies logic.
Anil is an engineering student who studies logic.
~ Anilis not in Il sem.
4 Prove “If n is an even integer, then n+3 is an odd integer.” [07] |CO4) L3
by direct method, indirect method and the method of contradiction
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Prove that every positive integer n > 24 can be written as a sum of 5’s and/or 7’s.

For the Lucas numbers Lo, L, Lo.... prove that

n n
Ln=[(1+2—£> +(1‘2—“§) ];Lozz, Li=1and Ly= Lo+ Lao for n>1.

A certain question paper contains three parts A, B, C with four questions in part A, five in
B, six in C. It is required to answer 7 questions selecting at least two from each part. In how
many different ways can a student select his seven questions for answering?

Let p(x): x>~ 8x+15 =0, q(x): x is odd, r(x): x > 0 with the set of all integers as the
universe. Find the truth values of the following statements. If a statement is false, give a
counter example.

() VX.[{p(x) v a(x)} = r(x)1, (ii) vx,[a(x) = p(x)]. (i) 3x,[p(x) =>{a(x) Ar(x)],
(V) YX,[=q(x) > =r()], () 3x[a0) = p)L, -y X [P(X) = q(x)]

Prove that every positive integer n > 24 can be written as a sum of 5’s and/or 7’s.

For the Lucas numbers Lo, L1, Lo.... prove that

n n
Lﬂ:[(#) +(1_T‘/§> ];LO:Z, Li=1and Ly =Ln1 + Ly2 for n>1.

A certain question paper contains three parts A, B, C with four questions in part A, five in
B, six in C. It is required to answer 7 questions selecting at least two from each part. In how
many different ways can a student select his seven questions for answering?

Let p(x): x2— 8x+15 =0, q(x): x is odd, r(x): x > 0 with the set of all integers as the universe.

Find the truth values of the following statements. If a statement is false, give a counter
example.

(@) VX.[{p(x) v a(x)F = r(x)1, (i) vx,[a(x) = p(x)], (i) 3x,[p(x) =>{a(x) Ar(x)],
(V) VX, [50(x) > =r()], () Ix[40) = p(L, (i) (X)) = a(X)]
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;6-» » Here, we have to prove that the statement
S (n) : n can be written as a sum of 5’s and/or 7’s
18 true for all integers n > 24.

Basis step: We note that
24=T+7)+(5+5).

This shows that S (24) is true.

Induction step: We assume that S (n) is true for n = k where k > 24. Then
k=T+7+---)+5+5+---).
Suppose this representation of k has r number of 7’s and s number of 5’s. Since k > 24, we
should have r > 2 and s > 2.

Using this representation of k, we find that

k+1=[(7+7+---2+£5+5+---2]+1

=(T+7+--)+@+T+G+5+--)+1
T 3
=g+7+---2+(§+5+---)

r-2) -

This shows that (k + 1) is a sum of 7°s and 5’s. Thus, S (k + 1) is true.

Hence, by mathematical induction, S (n) is true for all positive integers n > 24.
Aliter: The above result can alco be nraved with tha e o 01 1. = .
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3_ » The different possible ways in which a student can make a selection are

(I) 2 questions from Part A, 2 from Part B and 3 from Part C.
(I 2 questions from Part A, 3 from Part B and 2 from Part C.
(IIT) 3 questions from Part A, 2 from Part B and 2 from Part C.

Now, selection (I) can be made in -
C4,2)xC(5,2) xC(6,3) =6x10x20=1200 ways,
the selection (II) can be made in
C(4,2)x C(5,3) x C(6,2) =6x 10x 15 =900 ways,
and the selection (III) can be made in
C(4,3)x C(5,2) x C(6,2) =4 x10x 15 =600 ways.
Consequently, the total number of possible selections 1s

| 1200 + 900 + 600 = 2700.
\ /
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