USN					

Internal Assessment Test 3 Scheme & Solutions—January 2022

Sub:	Artificial Intelligence & Machine Learning Sub Code: 18CS71 Branch	: ISE				
Date:		. ISE	OBE			
Date:		MAR	CO	RBT		
	<u>Scheme</u>	KS	CO	KD I		
1.	1. • Defining the problem characteristics - 2 M					
	• Explanation - 8 M					
2	Defining the Production rules - 5 M	10M	CO1	L3		
	• Solution - 5 M					
3	Algorithm for BFS and DFS - 8M	10M	CO1	L2		
	• Comparison - 2 M					
4	Steepest ascent hill climbing -1 M	10M	CO1	L3		
	• Drawbacks - 2M					
	• Example - 7M					
5	AND_OR graph definition – 1M	10M	CO1	L3		
	• AO* algorithm - 4M					
	• Example - 5M					
6	• Solution to the problem - 10M	10M	CO1	L3		
7.a	7.a • Defining Q-Learning with example - 5M					
7.b	• Solution to the problem - 5M	5M	CO1	L3		
	Solutions Solutions					
1 I	10	CO1	L1			
C	on a proper heuristic search					
]	Problem characteristics					
	• Is the problem decomposable into a set of (nearly) independent smaller or easier					
	sub problems?					
	• Can solution steps be ignored or at least undone if they prove unwise?					
	• Is the problem's universe predictable?					
	• Is a good solution to the problem obvious without comparison to all other					
	possible solutions?Is the desired solution a state of the world or a path to a state?					
	1					
	• Is a large amount of knowledge absolutely required to solve the problem, or is knowledge important only to constrain the search?					
	• Can a computer that is simply given the problem return the solution, or will the					
	solution of the problem require interaction between the computer and a person?					
	s the problem decomposable?					

		1	1
$\int x^{2} + 3x + \sin^{2} x \cos^{2} x dx$ $\int x^{2} dx \qquad \int 3x dx \qquad \int \sin^{2} x \cos^{2} x dx$ $\int \frac{x^{3}}{3} \qquad 3\int x dx \qquad \int (1 - \cos^{2} x) \cos^{2} x dx$ $\int \frac{1}{2} (1 + \cos 2x) dx$ $\int \frac{1}{2} (1 + \cos 2x) dx$ $\int \frac{1}{2} x \qquad \int \cos^{2} x dx$ Can solution steps be ignored or at least undone if they prove unwise? Ignorable: Example theorem proving			
$\int x^2 dx \qquad \int 3x dx \qquad \int \sin^2 x \cos^2 x dx$			
$\begin{bmatrix} x^3 \end{bmatrix} = \begin{bmatrix} x dx \end{bmatrix} \begin{bmatrix} (1 - \cos^2 x) \cos^2 x dx \end{bmatrix}$			
$\frac{1}{3}$ \int_{3}^{3} \int_{3}^{3}			
$\frac{3x^2}{2} \qquad \int \cos^2 x \ dx \qquad \int \cos^4 x \ dx$			
1 (1 + 222 2v) dv			
$\int \frac{1}{2} (1 + \cos 2x) dx$			
$-\frac{1}{2}\int 1 dx \qquad -\frac{1}{2}\int \cos 2x dx$			
$\frac{1}{2}x$ $\frac{1}{4}\sin 2x$			
Can solution steps be ignored or at least undone if they prove unwise?			
Ignorable: Example theorem proving			
Recoverable: Example: the 8 puzzle			
Irrecoverable: Example chess			
Is the universe predictable?			
Do we clearly know the outcome of a move?			
Is a good solution absolute or relative? Using a set of rules to arrive at answering a question – solution can be absolute			
Travelling sales person – Solution is relative			
Is the solution a state or path?			
In certain cases, final solution is sufficient. (answering question based on facts)			
In the water jug problem, path to solution is important			
What is the role of knowledge?			
Knowledge may be required to limit the search space.			
Does the task require interaction with a person?			
2 A water jug problem states "You are given two jugs, a 4-gallon one and a 3-gallon one,	10	CO1	L3
a pump which has unlimited water which you can use to fill the jug, and the ground on			
which water may be poured. Neither jug has any measuring markings on it. How can you get exactly 2 gallon of water in the 4-gallon jug?"			
i)Write the production rules for the above problem			
ii) Write any one solution for the above problem			
• The state space for this problem can be described as a set of ordered pairs of			
integers (x,y) where,			
 x represents the number of gallons of water in the 4-gallon jug 			
• v represents the number of gallons of water in the 4-gallon jug			
 y represents the number of gallons of water in the 4-gallon jug. Values of x can be 0,1,2,3, or 4 			l
Values of x can be 0,1,2,3, or 4Values of y can be 0,1,2, or 3.			
 Values of x can be 0,1,2,3, or 4 Values of y can be 0,1,2, or 3. Start state is (0,0) 			
Values of x can be 0,1,2,3, or 4Values of y can be 0,1,2, or 3.			
 Values of x can be 0,1,2,3, or 4 Values of y can be 0,1,2, or 3. Start state is (0,0) 			

1 (x, y) \rightarrow (4, y) Fill the +gallon jug it x < 4 2 (x, y) \rightarrow (x, 3) Fill the 3-gallon jug it y < 3 3 (x, y) \rightarrow (x - d, y) Pour some water out of the 4-gallon jug on the ground 6 (x, y) \rightarrow (x, y) \rightarrow (x, y) Pour some water out of the 3-gallon jug on the 3-gallon jug on the ground 6 (x, y) \rightarrow (x, y) \rightarrow (x, y) \rightarrow (x, y) Empty the 4-gallon jug on the ground 7 (x, y) \rightarrow (x, y) \rightarrow (x, y) \rightarrow (x, y) Empty the 3-gallon jug on the ground 8 (x, y) \rightarrow (x + y \rightarrow 4 and y \rightarrow 0 9 (x, y) \rightarrow (x + y, 0) Empty the 3-gallon jug into the 4-gallon jug into the 3-gallon jug into the 4-gallon jug into the				1		
$ \begin{vmatrix} 2 & (x,y) & \rightarrow & (x,3) & \text{Fill the 3-gallon jug} \\ \text{if } y > 3 \\ 3 & (x,y) & \rightarrow & (x-d,y) & \text{Pour some water out of the 4-gallon jug} \\ \text{if } (x > 0) & \rightarrow & (x,y-d) & \text{Pour some water out of the 4-gallon jug} \\ \text{if } (x > 0) & \rightarrow & (x,y-d) & \text{Pour some water out of the 3-gallon jug} \\ \text{if } (x > 0) & \rightarrow & (x,0) & \text{Pour some water out of the 3-gallon jug} \\ \text{on the ground} & \text{Empty the 4-gallon jug} \\ \text{on the ground} & \text{Pour water from the 3-gallon jug} \\ \text{on the ground} & \text{Pour water from the 4-gallon jug} \\ \text{on the ground} & \text{Pour water from the 4-gallon jug} \\ \text{on the ground} & \text{Pour water from the 4-gallon jug} \\ \text{on the ground} & \text{Pour water from the 4-gallon jug} \\ \text{if } (x + y \ge 4 \text{ and } y > 0) & \rightarrow & (x + y, 0) \\ \text{if } (x + y \le 3 \text{ and } x > 0) & \text{Pour all the water from the 4-gallon jug} \\ \text{into the 4-gallon jug} & \text{into the 4-gallon jug} \\ \text{into the 4-gallon jug} & \text{into the 4-gallon jug} \\ \text{into the 4-gallon jug} & \text{Pour all the water from the 4-gallon jug} \\ \text{Pour the 2 gallons} & \text{Four the 2 gallons} & \text{Four the 2 gallons} \\ \text{In the 4-gallon jug} & \text{Pour all the water from the 4-gallon jug} \\ \text{Pour the 2 gallons in the 4-gallon jug} & \text{Pour the 2 gallons in the 4-gallon jug} \\ \text{Pour all the water from the 4-gallon jug} \\ \text{Pour the 2 gallons in the 4-gallon jug} \\ \text{Pour the 2 gallons in the 4-gallon jug} \\ \text{Pour all the water from the 4-gallon jug} \\ \text{Pour the 2 gallons in the 4-gallon jug} \\ \text{Pour the 2 gallons in the 4-gallon jug} \\ \text{Pour all the water from the 4-gallon jug} \\ \text{Pour the 2 gallons in the 4-gallon jug} \\ \text{Pour the 2 gallons in the 4-gallon jug} \\ \text{Pour the 2 gallons in the 4-gallon jug} \\ \text{Pour all the water from the 4-gallon jug} \\ \text{Pour all the water from the 4-gallon jug} \\ \text{Pour all the water from the 4-gallon jug} \\ \text{Pour all the water from the 4-gallon jug} \\ \text{Pour all the water from the 4-gallon jug} \\ \text{Pour all the water from the 4-gallon jug} \\ \text{Pour all the water from the 4-gallon jug} \\ Pour all the water from the 4$	$ \begin{array}{c c} 1 & (x, y) \\ \text{if } x < 4 \end{array} $	$\rightarrow (4, y)$	Fill the 4-gallon jug			
3 (x, y)	2(x, y)	\rightarrow $(x, 3)$	Fill the 3-gallon jug			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3 (x, y)	$\rightarrow (x-d, y)$				
if $y > 0$ 5 (x, y) if $x > 0$ 6 (x, y) if $x > 0$ 7 (x, y) if $x > 0$ 7 (x, y) if $x + y \ge 4$ and $y > 0$ 8 (x, y) if $x + y \ge 3$ and $x > 0$ 10 (x, y) if $x + y \le 3$ and $x > 0$ 11 (0, 2) 12 (2, y) 3 Gillons in the 4-Gallon Jug O Gallons in the 3-Gallon Jug O Gallons in the 4-Gallon Jug O Gallons i		$\rightarrow (x, y - d)$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$, (20, 5 - 60)				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		$\rightarrow (0, y)$				
if $y > 0$ 7 (x, y) if $x + y \ge 4$ and $y > 0$ 8 (x, y) if $x + y \ge 3$ and $x > 0$ 9 (x, y) if $x + y \ge 4$ and $y > 0$ 10 (x, y) if $x + y \le 4$ and $y > 0$ 10 (x, y) if $x + y \le 3$ and $x > 0$ 11 $(0, 2)$ 12 $(2, y)$ 3 Outtion Gallons in the 4-gallon jug into the 3-gallon jug into the 4-gallon jug into the 3-gallon into the 4-gallon into the 4-gallon into the 4-gallon jug into the 4-gallon jug i	if $x > 0$					
7 (x, y) \rightarrow $(4, y - (4 - x))$ Pour water from the 3-gallon jug into the 4-gallon jug into the 3-gallon jug into the 4-gallon jug into the 3-gallon jug into the 3-gallon jug into the 3-gallon jug into the 3-gallon jug into the 4-gallon ju		$\rightarrow (x, 0)$				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	-	$\rightarrow (4, y - (4 - x))$				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	if $x + y \ge 4$ and $y > 0$					
8 (x, y) \rightarrow $(x - (3 - y), 3)$ Pour water from the 4 -gallon jug into the 4 -gallon jug until the 3 -gallon jug until the 3 -gallon jug until the 3 -gallon jug into the 4 -gallon jug into the 3 -gallon jug into the 3 -gallon jug into the 3 -gallon jug into the 4 -gallon jug on the ground Solution Gallons in the 4 -Gallon Jug OOO 2 OO 3 OOO 2 OOO 3 OOO 2 OOO 3 OOO 2 OOO 3 OOO 2 OOO 3 OOO 3 OOO 1						
if $x + y \ge 3$ and $x > 0$ 9 (x, y) if $x + y \le 4$ and $y > 0$ 10 (x, y) if $x + y \le 4$ and $y > 0$ 11 (0, 2) 12 (2, y) 3 Gillons in the 4-Gallon jug 4-Gallon jug 4-Gallon jug 4-Gallon jug 5-O 3 Give the algorithms for DFS and BFS? Compare both with suitable example. Requirements of a good control strategy: 1. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.	8 (x y)	(r (3 y) 3)				
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\rightarrow (x - (3 - y), 3)$				
9 (x, y) \Rightarrow $(x + y, 0)$ Bour all the water from the 3-gallon jug into the 4-gallon jug on the ground Solution Gallons in the 4-gallon Jug O Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q						
if $x + y \le 4$ and $y > 0$ 10 (x, y)			3-gallon jug is full			
Into the 4-gallon jug Pour all the water from the 4-gallon jug from the 3-gallon jug from the 3-gallon jug from the 4-gallon jug from		$\rightarrow (x + y, 0)$				
10 (x, y)	$\text{if } x + y \le 4 \text{ and } y > 0$					
if $x+y \le 3$ and $x > 0$ 11 $(0,2)$ $\rightarrow (2,0)$ Pour the 2-gallon jug into the 3-gallon jug into the 3-gallon jug into the 3-gallon jug into the 4-gallon jug on the 4-gallon jug on the 4-gallon jug on the ground Solution Gallons in the Gallons in the 4-gallon jug on the ground O 3-Gallon Jug O 2 O 3 9 3 0 2 3 3 7 4 2 5 or 12 O 2 9 or 11 3 Give the algorithms for DFS and BFS? Compare both with suitable example. Requirements of a good control strategy: 1. A good control strategy causes motion (Change of state from initial to final) 2. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.	10 (x, y)	$\rightarrow (0, x + y)$				
l1 (0, 2) → (2, 0) Pour the 2 gallons from the 3-gallon jug into the 4-gallon jug into the 4-gallon jug into the 4-gallon jug into the 4-gallon jug on the ground Solution Gallons in the 4-Gallon Jug O O 2 O 3 9 O 2 O 3 9 O 2 O 2 O 2 O 2 O 2 O 2 O 2 O 2 O 2 O 2						
12 (2, y)		(20)				
Into the 4-gallon jug Empty the 2 gallons in the 4-gallon jug on the ground Solution Gallons in the 4-Gallon jug on the ground Gallons in the 4-Gallon jug on the ground Rule Applied O O O O O O O O O O O O O O O O O O	11 (0, 2)	\rightarrow (2, 0)				
12 (2, y)						
Solution Gallons in the 4-Gallon Jug 0 0 2 2 3 9 9 3 3 9 9 9 9 9 9 9 9 9 9 9 9 9	12 (2, y)	\rightarrow (0, y)				
Solution Gallons in the Gallons in the 4-Gallon Jug O O 2 O 3 9 O 3 9 O 2 O 3 9 O 2 O 2 O 3 7 O 2 O 2 O 3 7 O 2 O 2 O 3 7 O 2 O 2 O 2 O 3 9 O 12 O 2 O 2 O 2 O 2 O 2 O 2 O 3 0 2 O 2 O 2 O 3 0 0 O 2 O 2 O 3 0 0 O 2 O 2 O 3 0 0 O 2 O 2 O 3 0 0 O 2 O 3 0 0 O 2 O 3 0 0 O 3						
Gallons in the 4-Gallon Jug O O O O O O O O O O O O O O O O O O O			the ground			
4-Gallon Jug O O O O O O O O O O O O O O O O O O O	Solution Solution					
4-Gallon Jug O O O O O O O O O O O O O O O O O O O	Gallons in the	Gallons in the	Pule Applied			
O S S S S S S S S S S S S S S S S S S S			Rule Applied			
3 O 2 2 3 4 2 5 or 12 O 5 or 11 2 O 2 9 or 11 Create a variable called NODE-LIST and set it to initial state.						
3 O 2 3 A 7 4 2 5 or 12 O 2 9 or 11 3 Give the algorithms for DFS and BFS? Compare both with suitable example. Requirements of a good control strategy: 1. A good control strategy causes motion (Change of state from initial to final) 2. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.	0	2	2			
3 3 7 7 4 2 5 or 12 9 or 11 2 10 CO1 L2 Give the algorithms for DFS and BFS? Compare both with suitable example. Requirements of a good control strategy: 1. A good control strategy causes motion (Change of state from initial to final) 2. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.		3	9			
3 3 7 4 2 5 or 12 O 2 9 or 11 3 Give the algorithms for DFS and BFS? Compare both with suitable example. Requirements of a good control strategy: 1. A good control strategy causes motion (Change of state from initial to final) 2. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.	3	O	2			
4 2 5 or 12 O 2 9 or 11 3 Give the algorithms for DFS and BFS? Compare both with suitable example. Requirements of a good control strategy: 1. A good control strategy causes motion (Change of state from initial to final) 2. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.	3	3	2			
O 2 9 or 11 3 Give the algorithms for DFS and BFS? Compare both with suitable example. Requirements of a good control strategy: 1. A good control strategy causes motion (Change of state from initial to final) 2. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.			7			
O 2 9 or 11 3 Give the algorithms for DFS and BFS? Compare both with suitable example. Requirements of a good control strategy: 1. A good control strategy causes motion (Change of state from initial to final) 2. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.	4	2	5 or 12			
3 Give the algorithms for DFS and BFS? Compare both with suitable example. Requirements of a good control strategy: 1. A good control strategy causes motion (Change of state from initial to final) 2. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.	О	2				
3 Give the algorithms for DFS and BFS? Compare both with suitable example. Requirements of a good control strategy: 1. A good control strategy causes motion (Change of state from initial to final) 2. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.		0	9 or 11			
Requirements of a good control strategy: 1. A good control strategy causes motion (Change of state from initial to final) 2. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.	2	U				
Requirements of a good control strategy: 1. A good control strategy causes motion (Change of state from initial to final) 2. A good control strategy must be systematic. BFS • 1. Create a variable called NODE-LIST and set it to initial state.						
 A good control strategy causes motion (Change of state from initial to final) A good control strategy must be systematic. BFS 1. Create a variable called NODE-LIST and set it to initial state. 	<u> </u>	-	with suitable example.	10	CO1	L2
 2. A good control strategy must be systematic. BFS 1. Create a variable called NODE-LIST and set it to initial state. 	Requirements of a good cont	rol strategy:				
 2. A good control strategy must be systematic. BFS 1. Create a variable called NODE-LIST and set it to initial state. 	4 4 1 . 1					
 BFS 1. Create a variable called NODE-LIST and set it to initial state. 	1. A good control strate	gy causes motion (Chang	e or state from initial to final)			
1. Create a variable called NODE-LIST and set it to initial state.	2. A good control strate	gy must be systematic.				
1. Create a variable called NODE-LIST and set it to initial state.	BFS					
		alled NODE-LIST and se	t it to initial state			
2. Until a goal state is found or NODE-LIST is empty						
	• 2. Until a goal state is	s found or NODE-LIST is	sempty			

- Remove the first element from the NODE-LIST and call it El.If Α. NODE-LIST was empty quit.
- For each way that each rule can match the state described in E do:
 - 1. Apply the rule to generate a new state.
 - 2. If the new state is goal state quit and return this state.
 - 3. Otherwise, add the new state to the end of NODE-LIST.

Two Levels of a Breadth-First Search Tree

DFS:

- 1. If the initial state is a goal state quit and return success.
- 2. Otherwise, do the following until success or failure is signaled
 - Generate a successor E of the initial state. If there are no more successor, signal failure.
 - B. Call DFS with E as the initial state.
 - C. If success is returned signal success, otherwise continue in this loop.

A Depth-First Search Tree

Advantages:

DFS:

- Requires less memory since only the nodes on the current path are stored.
- By chance, DFS may find a solution without examining much of the search space at all.

BFS:

- Will not get trapped exploring a blind alley.
- BFS is guaranteed to find a solution if one exists.
- Minimal solution is always found.
- 10 CO₁ Explain steepest hill climbing search technique with an algorithm. Comment on its drawbacks and how to overcome these drawbacks. Also apply the same for 8-puzzle problem

Steepest-Ascent Hill climbing: It first examines all the neighboring nodes and then selects the node closest to the solution state as next node.

Algorithm: Steepest-Ascent Hill climbing

Step 1: Evaluate the initial state. If it is goal state then exit else make the current state as initial state

- Step 2: Repeat these steps until a solution is found or current state does not change
 - a. Let SUCC be a state such that any successor of the current state will be better than it:
 - b for each operator that applies to the current state do:
 - i. apply the new operator and create a new state
 - ii. Evaluate the new state
 - iii. if this state is goal state then quit else compare with SUCC
 - iv. if this state is better than SUCC, set this state as SUCC
 - c. if SUCC is better than current state set current state to SUCC

Drawbacks:

1. Local Maximum: A local maximum is a peak state in the landscape which is better than each of its neighboring states, but there is another state also present which is higher than the local maximum.

Solution: Backtracking technique can be a solution of the local maximum in state space landscape. Create a list of the promising path so that the algorithm can backtrack the search space and explore other paths as well.

2. Plateau: A plateau is the flat area of the search space in which all the neighbor states of the current state contains the same value, because of this algorithm does not find any best direction to move. A hill-climbing search might be lost in the plateau area.

Solution: The solution for the plateau is to take big steps or very little steps while searching, to solve the problem. Randomly select a state which is far away from the current state so it is possible that the algorithm could find non-plateau region.

3. Ridges: A ridge is a special form of the local maximum. It has an area which is higher than its surrounding areas, but itself has a slope, and cannot be reached in a single move.

1. Current state is S $f(A)=3+2=5, f(B)=2+4=6, f(C)=1+1=2$ Since, C is having smaller distance compared to other nodes, we have chosen current state as C. 2. Current State is C $f(A)=1+3=4, f(B)=1+4=5, f(G)=2+1=3$ Path = S -> C -> G			
6 Solve the following crytparithmetic problem DONALD+GERALD=ROBERT	10	CO1	L3
If DONALD + GERALD = ROBERT, then find the value of			
R+O+B+E+R+T 7+2+3+9+7+0=28			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
D5 02 N6 A4 L8 D5			
G E 9 R 7 A 4 L 8 D 5 T = 0/2 4 6	8		
$ R O_2 B_3 E_4 R_7 T_0 $			
$N \rightarrow 236$	1		
0->2 8 K			
B -> 2/3 8 N+R=10+B R=7/8			
7a) Explain the Q function and Q Learning Algorithm assuming deterministic rewards and actions with example. Q-learning algorithm	5	CO1	L2
Q rounning angorranin			
For each s,a initialize the table entry $\hat{Q}(s,a)$ to zero Oberserve the current state s			
Do forever:			
Select an action a and execute it			
Receive immediate reward r			
● Observe new state s'			
Update each table entry for $\hat{Q}(s,a)$ as follows			
$\hat{Q}(s,a) \leftarrow r + \gamma max_{a'} \hat{Q}(s',a')$			
$m{\mathscr{D}}$ $s\leftarrow s'$			
\Rightarrow using this algorithm the agent's estimate \hat{Q} converges to the actual Q , provided the			
system can be modeled as a deterministic Markov decision process, \boldsymbol{r} is bounded, and			
actions are chosen so that every state-action pair is visited infinitely often			

