

Internal	Assessment	Test	Ш	- March 2022

Sub:		Discrete Mathematical Structures				Sub Code:	18CS36	Branch:	CS &	k IS		
Date:	08/03/2022	Duration:	90 minutes	Max Marks:	50	Sem / Sec:	III A	A, B & C			OBE	
	Qı	testion 1 is co	ompulsory an	d answer any si	x from	m Q.2 to Q.8		MA	RKS	CO	RBT	
1	Find the number a) b)	of solutions of Non – nega	of the equation tive integers,	$X_1 + X_2 + X_3 + X_4 = 1$	5 in			[08]	CO2	L3	
2	H								CO2	L2		
3	There are 8 pairs socks are distribu- random, find the (iii) exactly one	of children's ated at randor probability th	n to n children nat (i) no child	and thereafter le gets a matching	eft soc pair (ks are also dis	stributed to the gets a matchin	m at	07]	CO2	L3	
4	Students S1, S2, of these students want D3 and D4; accommodated?	sit in the sam	e desk. S1 doe	esn't want D1 an	d D2;	S2 doesn't wa	ant D3; S3 doe	two [0	07]	CO2	L3	

USN

Internal Assessment Test III - March 2022

Sub:	Discrete Mathe	ematical Struc	etures			Sub Code:	18CS36	Branch:	CS &	S & IS		
Date:	08/03/2022	Duration:	90 minutes	Max Marks:	50	Sem / Sec:	III A	, B & C		OBE		
1	Find the number	of solutions of	of the equation	$\frac{d \text{ answer any si}}{x_1 + x_2 + x_3 + x_4} = 1$		m Q.2 to Q.8	f flower		ARKS [08]	CO CO2	RBT L3	
	17.	negative integ satisfying x ₁	$> 2, x_2 > -2, x_3$	$>0, x_4>-4$					- COM3			
2	How many integer divisible by none		and 300 (inclu	isive) are (i) div	isible	by at least on	e of 5, 6, 8? (ii) [[07]	CO2	L3	
3	There are 8 pairs socks are distribut random, find the (iii) exactly one of	ted at randon probability th	at (i) no child	and thereafter le gets a matching	eft soo pair (ks are also di ii) every child	stributed to the gets a matchin	m at	[07]	CO2	L3	
4	Students S1, S2, of these students want D3 and D4; accommodated?	sit in the sam	e desk. S1 does	sn't want D1 an	d D2;	S2 doesn't w	ant D3; S3 doe			CO2	L3	
			D b l - c' -	A J-G1	h. (w	VD 10 1	ly if x-y is a m	ultiple [[07]	CO3	L3	

6	The number of virus affected files in a system is 1000 (to start with) and this increases 250% every two hours. Use a recurrence relation to determine the number of virus affected files in the system after one day.	[07]	CO6	L3
7	Draw the Hasse diagram representing the relation R defined by "aRb iff a divides b" on the set of all positive divisors of 72.	[07]	CO3	L3
8	Solve the recurrence relation	[07]	CO6	L3
	$a_{n+2}^2 - 5a_{n+1}^2 + 4a_n^2 = 0$, for $n \ge 0$, given $a_0 = 4$ and $a_1 = 13$.			

5	Let A= {1, 2, 20 } and let R be a relation on A defined by (x,y)R if and only if x-y is a multiple of 4. Find the partition of A induced by R.	[07]	CO3	L3
6	The number of virus affected files in a system is 1000 (to start with) and this increases 250% every two hours. Use a recurrence relation to determine the number of virus affected files in the system after one day.	[07]	CO6	L3
7	Draw the Hasse diagram representing the relation R defined by "aRb iff a divides b" on the set of all positive divisors of 72.	[07]	CO3	L3
8	Solve the recurrence relation	[07]	CO6	L3
	$a_{n+2}^2 - 5a_{n+1}^2 + 4a_n^2 = 0$, for $n \ge 0$, given $a_0 = 4$ and $a_1 = 13$.			

IAT III - March 2022

(d)
$$n=4$$
, $\gamma=15$
No of non-negative int solution = $n+r-1$ $C_r = {}^{18}C_{15}$

(b)
$$x_1 > 2$$
, $x_2 > -2$, $x_3 > 0$, $x_4 > -4$
 $x_1 \ge 3$, $x_2 \ge -1$, $x_3 \ge 1$, $x_4 \ge -3$

Given eq becomes

$$(y_1+3)+(y_2-1)+(y_3+1)+(y_4-3)=15$$

 $y_1+y_2+y_3+y_4=15$, $n=4$, $r=15$
 $y_1+y_2+y_3+y_4=15$, $n=4$, $r=15$
 $y_1+y_2+y_3+y_4=15$

5.
$$A = \{1, 2, 3, \dots 20\}$$

 $R = \{(1, 1), (1, 5), (1, 9), \dots \}$

$$[1] = \{1, 5, 9, 13, 17\} = A_1, say$$

$$[2] = \{2, 6, 10, 14, 18, \infty\} = A_2, say$$

$$[3] = \{3, 7, 11, 15, 19\} = A_3, say$$

The partition of A is:

$$P = \{A_1, A_2, A_3, A_4\}$$
 as $A_1 \cup A_2 \cup A_3 \cup A_4 = A$
 $A_1 \cap A_1 = \emptyset$ for $i \neq j$
 $for i \neq j$

2. |S| = 300, Let A_1 , A_2 , A_3 be subsets of 8 whose elements are divisible by 5, 6, 8 gresp¹⁴. Then $|A_1| = \lfloor 300/5 \rfloor = 60$, $|A_2| = \lfloor 300/6 \rfloor = 50$. $|A_3| = \lfloor 300/8 \rfloor = 37$, $|A_1 \cap A_2| = \lfloor 300/30 \rfloor = 10$, $|A_1 \cap A_3| = \lfloor 300/40 \rfloor = 7$, $|A_2 \cap A_3| = \lfloor 300/40 \rfloor = 12$ LCM of 6 & 8 FX 24 $|A_1 \cap A_2 \cap A_3| = \lfloor 300/120 \rfloor = 2$ LCM of 5, 6, 8 FX 24.

(i)
$$|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2|$$

 $= (60 + 50 + 37) - (10 + 7 + 12) + 2 = 120$
(ii) $|A_1 \cap A_2 \cap A_3| = 131 - |A_1 \cup A_2 \cup A_3|$
 $= 300 - 120 = 180$

pair is of a different colour. Suppose the right gloves are distributed at random to n children, and thereafter the left gloves are also distributed to them at random. Find the prob that (1) no child gets a matching pair, (1i) every child gets a matching pair.

Civi atleast 2 children get matching pairs.

Any one distribution of n right gloves to n children determines a set of n places for the n pairs of glover. Let us take these as the natural places for the pairs of gloves. The left gloves can be distributed to n children in n! ways.

(i) The event of no child getting a meetching pair occurs if the distribution of the left gloves is a drangement. The no of derangements is do. . the sequired prob in this case, Es

$$P_1 = \frac{dn}{n!} = \left(1 - \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \frac{1}{3!$$

(ii) The event of every child getting a snatching pair occurs on only one distribution of the left glove. it the required probability, in this case. Is $P_2 = \frac{1}{n_3}$.

(iii) The event of exactly one child getting a matching pair occurs when only one left glove is in the natural place, and all others are in every places.

The no of such distributions is d_{n-1} . The req prob, in this case, is $P_3 = \frac{d_{n-1}}{n_3} = \frac{1}{n_3} \left(1 - \frac{1}{1_3} + \frac{1}{2} - \frac{1}{1_3} + \frac{1}{1_3}$

(iv) The event of atleast two children getting a matching pair eccusion if the event of no child or one child getting a matching pair does not occur. The prop in this case is $P_4 = 1 - (P_1 + P_3)$.

4) D₁ D₂ D₃ D₄ D₅ D₆
S₂ S₃ S₅ S₅ S₅ S₆ S₇ S₈

n=6, m=4

 C_1 C_2 C_2 C_3 C_4 C_5 C_6 C_8

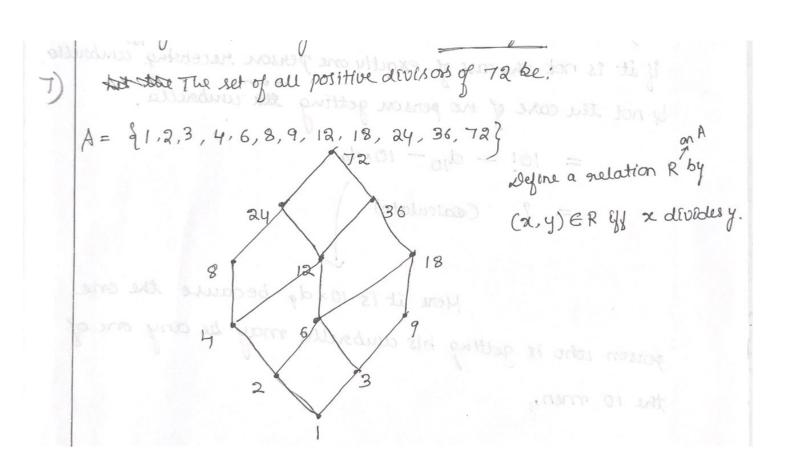
(3,5) (3,6), (3,7), (3,8) (4,6), (4,7), (4,8), (5,7), (5,8) (3,5,7), (3,5,8)

G(x,x) = 1 + 2x $G(x,x) = 1 + 6x + 9x^2 + 2x^3$

 $C(r,x) = C_1(r,x) \times C_2(r,x)$ $= (1+2x) (1+6x+9x^2+2x^3)$ $= 1+6x+9x^2+2x^3+2x+12x^2+18x^3+4x^4$ $= 1+8x+21x^2+20x^3+4x^4$

 $\overline{N} = P(6.4) - 8.P(5.3) + 21P(4.2) = 20P(3.1)$ +40P(2.0)

 $= \frac{6!}{2!} - 8 \cdot \frac{5!}{2!} + 21 \cdot \frac{4!}{2!} + 20 \cdot \frac{3!}{2!} + 4 \cdot \frac{2!}{2!}$


= 360 - 480 + 252 = 60 + 4

= 616 - 540 = 76

The no of virus affected flies in a system is 1000 (to start with) and this encoreases 250%, every two hours. Use a recurrence relation to determine the no of virus affected file in the system after one day.

Let $a_0 = 1000$. Let an denote the no of virus affected files after an hours. Then the no incoreases by $a_0 \times \frac{250}{100}$ in the next two hours. Thus, after an+2 hours, the no in $a_0 + \frac{250}{100}$ in the next wo hours. Thus, after an+2 hours, the no in $a_0 + \frac{250}{100}$ in $a_0 + \frac{250}{100}$ and $a_0 + \frac{250}{100}$ is an $a_0 + \frac{250}{100}$. This is the no of virus affected files after an hours. Prom this, we get.

This is the no of virus affected files after an hours. Prom this, and $a_0 + \frac{250}{100}$. This is the no of virus affected files after an hours. Prom this, and $a_0 + \frac{250}{100}$.

Let on= ap. Sol: -

Then the given relation reads

bn+2-56n++46n=0, n=0

or equivalently,

bn-56n-1+46n-2=0, n22

Characteristic equis £2-5k+4=0

=> K,=4 & k2=1

: 800 for by is bn= A × 40 +Bx10 -0

Given a0 = 4 & ay= 13

=) $b_0 = 00^2 = 16 d$ $b_1 = 04^2 = 18^2 = 169$

(D) => 16 = A+B & 169 = 4A+B

=> A = 51 & B= -35

=> bn= 51x4h -35

=> $an = \pm \sqrt{(5/24^{9}-35)}$

This is the required son for an