

IAT 3 Solution

Sub: Automata Theory and Computability(18CS54)

Dept. of CSE, CMRIT, Bangalore

Q. 1. Design a Turing Machine for L= {anbncn|n>=1}. Write the transition function

for the same and also indicate the moves made by TM for input string W=aabbcc

Ans:

Q.2. Explain the working principle of TM with diagram. Explain variants

of TM with a neat diagram.

Ans:

VARIANTS OF TURING MACHINE:

There are two new models of Turing machines:

1. MULTITAPE TURING MACHINE

2. NON-DETERMINISTIC TURING MACHINE

MULTITAPE TURING MACHINE
Multi-tape Turing Machines have multiple tapes where each tape is

accessed with a separate head. Each head can move independently of the

other heads. Initially the input is on tape 1 and others are blank. At first,

the first tape is occupied by the input and the other tapes are kept blank.

Next, the machine reads consecutive symbols under its heads and the TM

prints a symbol on each tape and moves its heads.

Finite Control

.

.

.

A Multi-tape Turing machine can be formally described as a 7-tuple (Q,Σ,Г,

B, δ, q0, F) where −

 Q is a finite set of states

 Σ is a finite set of inputs

 Г is the tape alphabet

 B is the blank symbol

 δ is a relation on states and symbols where

δ: Q × Гk → Q × (Г× {Left, Right, Stationary})k

where there is k number of tapes

 q0 is the initial state

 F is the set of final states

In each move the machine M:

(i) Enters a new state

(ii) A new symbol is written in the cell under the head on each tape

(iii) Each tape head moves either to the left or right or remains

stationary.

NON-DETERMINISTIC TURING MACHINE

In a Non-Deterministic Turing Machine, for every state and symbol, there are a group of

actions the TM can have. So, here the transitions are not deterministic. The computation

of a non-deterministic Turing Machine is a tree of configurations that can be reached from

the start configuration.

An input is accepted if there is at least one node of the tree which is an accept

configuration, otherwise it is not accepted. If all branches of the computational tree halt on

all inputs, the non-deterministic Turing Machine is called a Decider and if for some input, all

branches are rejected, the input is also rejected.

A non-deterministic Turing machine can be formally defined as a 7-tuple (Q, ∑,Г, δ, q0, B, F)

where −

 Q is a finite set of states

 Г is the tape alphabet

 ∑ is the input alphabet

 δ is a transition function;

δ : Q × Г → 2(Q × Г × {Left, Right})

 q0 is the initial state

 B is the blank symbol

 F is the set of final states

Q

Q.3. Write Short notes on:

(a) Halting problem of TM

(b) Classes of P and NP

Halting problem of TM

Classes of P and NP

Q.4. Define Chomsky Normal Form (CNF). Convert the following CFG to CNF.

S→ aAa | bBb | ϵ

A→C | a

B→C | b

C→CDE | ϵ
D→A| B |ab

Ans:

CNF stands for Chomsky normal form. A CFG (context free grammar) is in CNF

(Chomsky normal form) if all production rules satisfy one of the following conditions:

o A non-terminal generating two non-terminals. For example, S → AB.

o A non-terminal generating a terminal. For example, S → a.

Step 1: Remove NULL productions

NULL set= { S, A, B, C, D}

S→ aAa | bBb | aa | bb

A→C | a

B→C | b

C→CDE | DE | CE | E
D→A| B |ab

Step2: Remove useless symbol

C, E, D are useless symbols.

S→ aAa | bBb | aa | bb

A→ a

B→ b

No Unit Productions.

Step4: Convert to CNF

S→ PX | QY | XX | YY

A→ a

B→ b

X→a

Y→b

P→XA

Q→YB

Q.5. Write Short notes on:

Post correspondence problem

Post Correspondence Problem is a popular undecidable problem that was
introduced by Emil Leon Post in 1946. It is simpler than Halting Problem.
In this problem we have N number of Dominos (tiles). The aim is to arrange

tiles in such order that string made by Numerators is same as string made by

https://www.geeksforgeeks.org/decidable-and-undecidable-problems-in-theory-of-computation/

Denominators.
In simple words, let’s assume we have two lists both containing N words, aim
is to find out concatenation of these words in some sequence such that both
lists yield same result.
Let’s try understanding this by taking two lists A and B
A= [aa, bb, abb] and B=[aab, ba, b]

Now for sequence 1, 2, 1, 3 first list will yield aabbaaabb and second list will
yield same string aabbaaabb.
So the solution to this PCP becomes 1, 2, 1, 3.

Linear Bounded Automata

Alinear bounded automata (LBA) is a restricted form of Turing machinewith a tape of some

bounded finite length. The computation is restricted to the constant bounded area. The input

alphabet contains two special symbols which serve as left end markers and right end markers

which mean the transitions neither move to the left of the left end marker nor to the

right of the right end marker of the tape.

A linear bounded automaton can be defined as an 8-tuple (Q, ∑,Г, q0, ML, MR, δ, F) where −

 Q is a finite set of states

 Г is the tape alphabet

 ∑ is the input alphabet

 q0 is the initial state

 ML is the left end marker (ex: <)

 MR is the right end marker(ex: >) where MR ≠ ML

 δ is a transition function which maps each pair (state, tape symbol) to (state, tape

symbol, Constant ‘c’) where c can be 0 or +1 or -1

 F is the set of final states

 Working space

< a b >

Left end marker Input string Right end marker

A deterministic linear bounded automaton is always context-sensitive and the linear bounded

automaton with empty language is undecidable.

 The language accepted by LBA is called context-sensitive language.

 Example:

L={anbncn} and L={ a n! }

https://en.wikipedia.org/wiki/Turing_machine

 It is more powerful that NPDA but less powerful that TM

Q.6. Design a Turing Machine for L= {W contains a substring baab and W Ɛ {a,b}*}.

Write the transition function for the same and also indicate the moves made by TM for

input string W=abaabb.

Ans:

Transition Function:

δ (q0,a)= (q0,a,R)

δ (q0,b)= (q1,b,R)

δ (q1,a)= (q2,a,R)

δ (q1,b)= (q1,b,R)

δ (q2,a)= (q3,a,R)

δ (q2,b)= (q1,b,R)

δ (q3,a)= (q0,a,R)

δ (q3,b)= (q4,b,R)

δ (q4,a)= (q4,a,R)

δ (q4,b)= (q4,b,R)

δ (q4,B)= (q5,B,R)

ID for input string W=abaabb

(q0, abaabbB) |-- aq0baabbB |--abq1aabbB |--abaq2abbB |--abaaq3bbB |--abaabq4bB |--

abaabbq4B |--abaabbBq5 Accepted

Q.7. Define Greibach Normal Form (GNF). Convert the following CFG to GNF.

S→AA|0

A→SS| 1

Ans:

GNF stands for Greibach normal form. A CFG (context free grammar) is in GNF

(Greibach normal form) if all the production rules satisfy one of the following

conditions:

o A non-terminal generating a terminal. For example, A → a.

o A non-terminal generating a terminal which is followed by any number of non-

terminals. For example, S → aASB.

Step1: No null production, no unit production, no useless symbols.

Step2:

A1→ A2A2 |0

A2→ A1A1 | 1

In the A2 production 2>1, so

A2→A2A2A1 | 0A1 | 1

Removing left recursion from the grammar.

A1→ A2A2 |0

A2→ 0A1 A2’ | 1 A2’| 0A1 | 1

A2’→A2A1 A2’ | A2A1

Converting to GNF

A1→ 0A1 A2’ A2 |0 | 1 A2’ A2|0A1 A2 |1 A2

A2→ 0A1 A2’ | 1 A2’| 0A1 | 1

A2’→0A1 A2’ A1 A2’ | 0A1 A2’ A1 | 1 A2’A1 A2’ | 1 A2’A1| 0A1A1 A2’ | 0A1A1| 1A1 A2’ | 1A1

