
USN

Internal Assessment Test 3 – Jan. 2022

Sub: Web Technologies & its Applications Sub Code: 17CS71 Branch:

Date: 24-01-2022 Duration: 90 min’s Max Marks: 50
Sem /

Sec:
7 – D

Answer any FIVE FULL Questions
MARKS CO RBT

1(a) Briefly explain Arrays in PHP with examples.

PHP Arrays

PHP supports arrays. An arrayis a data structure that allows the programmer to

collect a number of related elementstogether in a single variable.an array is

actually an ordered map, which associates each value in the arraywith a key.

 $days 0 | 1 | 2 | 3 | 4

 Keys

 "Mon"| "Tue"| "Wed"| "Thu" | "Fri" Values

FiGURE 9.1 Visualization of a key-value array

Array keys in most programming languages are limited to integers, start at 0,

and go up by 1. In PHP, keys must be either integers or strings and need not be

sequential. This means you cannot use an array or object as a key.

 One should be especially careful about mixing the types of the keys for

an array since PHP performs cast operations on the keys that are not integers or

strings. You cannot have key “1” distinct from key 1 or 1.5, since all three will

be cast to the integer key 1.

Array values, unlike keys, are not restricted to integers and strings. They can

be

any object, type, or primitive supported in PHP. You can even have objects of

your

own types, so long as the keys in the array are integers and strings.

Defining and Accessing an Array

The following declares an empty array nameddays:

$days = array();

To define the contents of an array as strings for the days of the week as shown

[05] CO3 L2

in Figure 9.1, you declare it with a comma-delimited list of values inside the ()

braces using either of two following syntax's:

$days = array("Mon","Tue","Wed","Thu","Fri");

$days = ["Mon","Tue","Wed","Thu","Fri"]; // alternate syntax

no keys are explicitly defined for the array, thedefault key values are 0, 1, 2, . . .

, n.echoes the value of our $days array for the key=1, which results inoutput of Tue.

echo "Value at index 1 is ". $days[1]; // index starts at zero

You could also define the array elements individually using this same

squarebracket notation:

$days = array();

$days[0] = "Mon";

$days[1] = "Tue";

$days[2] = "Wed";

// also alternate approach

$daysB = array();

$daysB[] = "Mon";

$daysB[] = "Tue";

$daysB[] = "Wed";

$days = array(0 =>"Mon", 1 =>"Tue", 2 =>"Wed", 3 =>"Thu", 4=>"Fri");

0->key

Mon->value

Figure 9.2 Explicitly assigning keys to array elements

$forecast = array("Mon" => 40, "Tue" => 47, "Wed" => 52, "Thu" => 40, "Fri" => 37);

Key->mon

Value->40

echo $forecast["Tue"]; // outputs 47

echo $forecast["Thu"]; // outputs 40

consider an array to be a dictionary or hash map. These types of arraysin PHP

are generally referred to as associative arrays.

to access an element in an associative array, yousimply use the key value rather

than an index:

echo $forecast["Wed"]; // this will output 52

Multidimensional Arrays

PHP also supports multidimensional arrays.

$month = array

(

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri"),

array("Mon","Tue","Wed","Thu","Fri")

);

echo $month[0][3]; // outputs Thu

$cart = array();

$cart[] = array("id" => 37, "title" =>"Burial at Ornans",

"quantity" => 1);

$cart[] = array("id" => 345, "title" =>"The Death of Marat",

"quantity" => 1);

$cart[] = array("id" => 63, "title" =>"Starry Night", "quantity" => 1);

echo $cart[2]["title"]; // outputs Starry Night

listing 9.1 Multidimensional arrays

Iterating through an Array

One of the most common programming tasks that you will perform with an

array

is to iterate through its contents.

// while loop

$i=0;

while ($i < count($days)) {

echo $days[$i] . "
";

$i++;

}

// do while loop

$i=0;

do {

echo $days[$i] . "
";

$i++;

} while ($i < count($days));

// for loop

for ($i=0; $i<count($days); $i++) {

echo $days[$i] . "
";

}

Code: Iterating through an array using while, do while, and for loops

output thecontent of the $days array using the built-in function count()

For an associative array,the foreach loop and illustrated for the $forecast array

// foreach: iterating through the values

foreach ($forecast as $value) {

echo $value . "
";

}

// foreach: iterating through the values AND the keys

foreach ($forecast as $key => $value) {

echo "day" . $key . "=" . $value;

}

Adding and Deleting Elements

In PHP, arrays are dynamic, that is, they can grow or shrink in size. An element

can be added to an array simply by using a key/index that hasn’t been used, as

shown below:

$days[5] = "Sat";

Since there is no current value for key 5, the array grows by one, with the new

key/value pair added to the end of our array. If the key had a value already, the

same

style of assignment replaces the value at that key. As an alternative to

specifying the

index, a new element can be added to the end of any array using the following

technique:

$days[] = "Sun";

$days = array("Mon","Tue","Wed","Thu","Fri");

$days[7] = "Sat";

print_r($days);

What will be the output of the print_r()? It will show that our array now

contains the following:

Array ([0] => Mon [1] => Tue [2] => Wed [3] => Thu [4] => Fri [7] => Sat)

Referencing$days[6], for instance, it will return a NULL value, which is a

special PHP valuethat represents a variable with no value.You can also create

“gaps” by explicitly deleting array elements using theunset() function,

$days = array("Mon","Tue","Wed","Thu","Fri");

unset($days[2]);

unset($days[3]);

print_r($days); // outputs: Array ([0] => Mon [1] => Tue [4] => Fri)

$days = array_values($days);

print_r($days); // outputs: Array ([0] => Mon [1] => Tue [2] => Fri)

you can remove “gaps” in arrays (whichreally are just gaps in the index keys)

using the array_values() function, whichreindexes the array numerically.

Checking If a Value Exists

To checkif a value exists for a key, you can therefore use the isset() function,

which returns

true if a value has been set, and false otherwise.

$oddKeys = array (1 =>"hello", 3 =>"world", 5 =>"!");

if (isset($oddKeys[0])) {

// The code below will never be reached since $oddKeys[0] is not set!

echo "there is something set for key 0";

}

if (isset($oddKeys[1])) {

// This code will run since a key/value pair was defined for key 1

echo "there is something set for key 1, namely ". $oddKeys[1];

}

1(b) Explain the different ways of error handling in PHP with examples.

Procedural Error Handling

In the procedural approach to error handling, the programmer needs to

explicitly test for error conditions after performing a task that might generate an

error.

$connection = mysqli_connect(DBHOST, DBUSER, DBPASS, DBNAME);

$error = mysqli_connect_error();

if ($error != null) {

// handle the error

...

}

Object-Oriented Exception Handling

When a runtime error occurs, PHP throws an exception. This exception can be

caught and handled either by the function, class, or page that generated the

exception or by the code that called the function or class. If an exception is not

caught, then eventually the PHP environment will handle it by terminating

execution with an “Uncaught Exception” message.4

[05] CO3 L2

// Exception throwing function

function throwException($message = null,$code = null) {

throw new Exception($message,$code);

}

try {

// PHP code here

$connection = mysqli_connect(DBHOST, DBUSER, DBPASS,

DBNAME)

or throwException("error");

//...

}

catch (Exception $e) {

echo ' Caught exception: ' . $e->getMessage();

echo ' On Line : ' . $e->getLine();

echo ' Stack Trace: '; print_r($e->getTrace());

} finally {

// PHP code here that will be executed after try or after catch

}

The finally block is optional. Any code within it will always be executed after

the code in the try or in the catch blocks, even if that code contains a return

statement. It is typically used if the developer wants certain things done

regardless of whether an exception occurred, such as closing a connection or

removing temporary files.

function processArray($array)

{

// make sure the passed parameter is an array with values

if (empty($array)) {

throw new Exception('Array with values expected');

}

// process the array code

...

}

One possible strategy for such a scenario is to throw an exception:

public function setBirthDate($birthdate){

// set variable only if passed a valid date string

if ($timestamp = strtotime($birthdate)) {

$this->birthDate=$timestamp;

}

else {

throw new Exception("Invalid Date in Artist->setBirthDate()");

}

}

try {

// PHP code here

}

catch (Exception $e) {

// do some application-specific exception handling here

...

// now rethrow exception

throw $e;

}

2(a) Explain selectors in JQuery with examples.
jQuery Selectors

Basic Selectors

The four basic selectors were defined, and include the universalselector, class selectors, id selectors,

and elements selectors. To review:

■ $("*") Universal selector matches all elements (and is slow).

■ $("tag") Element selector matches all elements with the given element name.

[10] CO5 L2

■ $(".class") Class selector matches all elements with the given CSS class.

■ $("#id") Id selector matches all elements with a given HTML id attribute.

For example, to select the single <div>element with id="grab"you wouldwrite:

var singleElement = $("#grab");

To get a set of all the <a>elements the selector would be:

var allAs = $("a");

These selectors are powerful enough that they can replace the use ofgetElementById() entirely.

Attribute Selector

An attribute selector provides a way to select elements by either the presence of an

element attribute or by the value of an attribute.

A list of sample CSS attribute selectorswas given in Chapter 3 (Table 3.4), but to jog your memory

with an example, considera selector to grab all elements with an src attribute beginning with

/artist/ as:

var artistImages = $("img[src^='/artist/']");

Recall that you can select by attribute with square brackets ([attribute]), specifya value with an equals

sign ([attribute=value]) and search for a particular value inthe beginning, end, or anywhere inside a string

with ^, $, and * symbols respectively.

([attribute^=value], [attribute$=value], [attribute*=value]).

Pseudo-Element Selector

Pseudo-elements are special elements, which are special cases of regular ones. these pseudo-element

selectors allow you to appendto any selector using the colon and one of :link, :visited, :focus, :hover,:active,

:checked, :first-child, :first-line, and :first-letter.

These selectors can be used in combination with the selectors presented above,or alone. Selecting all

links that have been visited, for example, would be specified

with:

var visitedLinks = $("a:visited");

Contextual Selector

Another powerful CSS selector included in jQuery’s selection mechanism is thecontextual selectors

introduced in Chapter 3. These selectors allowed you to specifyelements with certain relationships to

one another in your CSS. These relationshipsincluded descendant (space), child (>), adjacent sibling

(+), and general sibling (~).To select all <p>elements inside of <div>elements you would write

var para = $("div p");

Content Filters

The content filter is the only jQuery selector that allows you to append filters to all ofthe selectors

you’ve used thus far and match a particular pattern. You can selectelements that have a particular

child using :has(), have no children using :empty, ormatch a particular piece of text with :contains().

Consider the following example:

var allWarningText = $("body *:contains('warning')");

var allWarningText = $("body *:contains('warning')");

It will return a list of all the DOM elements with the word warning inside of

them. You might imagine how we may want to highlight those DOM elements by

coloring the background red as shown in Figure 15.5 with one line of code:

$("body *:contains('warning')").css("background-color", "#aa0000");

Form Selectors

Since form HTML elements are well known and frequently used to collect andtransmit data, there are

jQuery selectors written especially for them. These selectors,listed in Table 15.1, allow for quick

access to certain types of field as well as fieldsin certain states.attributes like the href attribute of an

<a>tag, the src attribute of an , or theclass attribute of most elements.In jQuery we can both set and

get an attribute value by using the attr() methodon any element from a selector. This function takes a

parameter to specify whichattribute, and the optional second parameter is the value to set it to. If no

secondparameter is passed, then the return value of the call is the current value of theattribute. Some

example usages are:

// var link is assigned the href attribute of the first <a> tag

var link = $("a").attr("href");

// change all links in the page to http://funwebdev.com

$("a").attr("href","http://funwebdev.com");

// change the class for all images on the page to fancy

$("img").attr("class","fancy");

3(a) Explain super global array $_FILES with examples.
The $_FILES associative array contains items that have been uploaded to the current script.

The element is used to create the user interface for uploading a file from the client to the

server. The user interface is only one part of the uploading process. A server script must

process the upload file(s) in some way; the $_FILES array helps in this process. HTML

Required for File Uploads To allow users to upload files, there are some specific things you

must do: ■ First, you must ensure that the HTML form uses the HTTP POST method, since

transmitting a file through the URL is not possible. ■ Second, you must add the

enctype="multipart/form-data" attribute to the HTML form that is performing the upload so

that the HTTP request can submit multiple pieces of data (namely, the HTTP post body, and

the HTTP file attachment itself). ■ Finally you must include an input type of file in your

form. This will show up with a browse button beside it so the user can select a file from their

computer to be uploaded.

Submit

Handling the File Upload in PHP The corresponding PHP file responsible for handling the

upload will utilize the superglobal $_FILES array. This array will contain a key=value pair

for each file uploaded in the post. The key for each element will be the name attribute from

the HTML form, while the value will be an array containing information about the file as

well as the file itself. The keys in that array are the name, type, tmp_name, error, and size.

The values for each of the keys are described below. ■ name is a string containing the full

file name used on the client machine, including any file extension. It does not include the file

path on the client’s machine. ■ type defines the MIME type of the file. This value is provided

by the client browser and is therefore not a reliable field. ■ tmp_name is the full path to the

location on your server where the file is being temporarily stored. The file will cease to exist

upon termination of the script, so it should be copied to another location if storage is

required. ■ error is an integer that encodes many possible errors and is set to

UPLOAD_ERR_OK (integer value 0) if the file was uploaded successfully. ■ size is an

integer representing the size in bytes of the uploaded file

[05] CO4 L2

3(b) Explain super global array $_GET and $_POST with a neat diagram.

The $_GET and $_POST arrays are the most important superglobal variables in

PHP since they allow the programmer to access data sent by the client in a query

string.

[05] CO4 L2

 An HTML form (or an HTML link) allows a client to send data to the server.

That data is formatted such that each value is associated with a name defined in

the form. If the form was submitted using an HTTP GET request, then the

resulting URL will contain the data in the query string. PHP will populate the

superglobal $_GET array using the contents of this query string in the URL.

If the form was sent using HTTP POST, then the values would not be visible in

the URL, but will be sent through HTTP POST request body. From the PHP

programmer’s perspective, almost nothing changes from a GET data post except

that those values and keys are now stored in the $_POST array.

4(a) How cookies and session work? Give examples.
While cookie information is stored and retrieved by the browser, the information ina cookie travels

within the HTTP header. Figure 13.6 illustrates how cookies work.There are limitations to the amount

of information that can be stored in acookie (around 4K) and to the number of cookies for a domain

(for instance,Internet Explorer 6 limited a domain to 20 cookies).HTTP cookies can also expire. That

is, the browser will delete cookies that

are beyond their expiry date (which is a configurable property of a cookie). If acookie does not have an

expiry date specified, the browser will delete it when thebrowser closes (or the next time it accesses the

site). For this reason, some commentatorswill say that there are two types of cookiessession cookies

and persistentcookies. A session cookie has no expiry stated and thus will be deleted at the end ofthe

user browsing session. Persistent cookies have an expiry date specified; they willpersist in the

browser’s cookie file until the expiry date occurs, after which they aredeleted.

The most important limitation of cookies is that the browser may be configuredto refuse them. As a

consequence, sites that use cookies should not depend on theiravailability for critical features.

Similarly, the user can also delete cookies or eventamper with the cookies, which may lead to some

serious problems if not handled.

Several years ago, there was an instructive case of a website selling stereos and televisionsthat used a

cookie-based shopping cart. The site placed not only the productidentifier but also the product price in

the cart. Unfortunately, the site then used theprice in the cookie in the checkout. Several curious

shoppers edited the price in thecookie stored on their computers, and then purchased some big-screen

televisionsfor only a few cents!

Using Cookies

Like any other web development technology, PHP provides mechanisms for writingand reading

cookies. Cookies in PHP are created using the setcookie() functionand are retrieved using the $_COOKIES

superglobal associative array.Below example illustrates the writing of a persistent cookie in PHP

<?php

// add 1 day to the current time for expiry time

$expiryTime = time()+60*60*24;

// create a persistent cookie

$name = "Username";

$value = "Ricardo";

setcookie($name, $value, $expiryTime);

?>

The setcookie() function also supports several more parameters, which furthercustomize the new cookie.

You can examine the online official PHP documentationfor more information. The below example

illustrates the reading of cookie values. Notice that when we reada cookie, we must also check to ensure

that the cookie exists. In PHP, if the cookiehas expired (or never existed in the first place), then the

client’s browser would not

send anything, and so the $_COOKIE array would be blank.

<?php

[10] CO2 L2

if(!isset($_COOKIE['Username'])) {

//no valid cookie found

}

else {

echo "The username retrieved from the cookie is:";

echo $_COOKIE['Username'];

}

?>

How Does Session State Work?

The first thing to know about session state is that it works within the sameHTTP context as any web

request. The server needs to be able to identify a givenHTTP request with a specific user request. Since

HTTP is stateless, some type ofuser/session identification system is needed.

In PHP, this is a unique 32-byte string that is bydefault transmitted back and forth between the user and

the server via a sessioncookie (see Section 13.4.1 above), as shown in Figure 13.9.

For a brand new session, PHP assigns an initially emptydictionary-style collection that can be used to

hold any state values for this session.When the request processing is finished, the session state is saved

to some type of

state storage mechanism, called a session state provider (discussed in next section).Finally, when a new

request is received for an already existing session, the session’sdictionary collection is filled with the

previously saved session data from the sessionstate provider.

5

(a)
How do you achieve encapsulation in PHP? Give examples.
Data Encapsulation Perhaps the most important advantage to object-oriented design is
the possibility of encapsulation, which generally refers to restricting access to an
object’s internal components. Another way of understanding encapsulation is: it is the
hiding of an object’s implementation details. A properly encapsulated class will define
an interface to the world in the form of its public methods, and leave its data, that is, its
properties, hidden (that is, private). This allows the class to control exactly how its data
will be used. If a properly encapsulated class makes its properties private, then how do
you access them? The typical approach is to write methods for accessing and modifying
properties rather than allowing them to be accessed directly. These methods are
commonly called getters and setters (or accessors and mutators). Some development
environments can even generate getters and setters automatically. A getter to return a
variable’s value is often very straightforward and should not modify the property. It is
normally called without parameters, and returns the property from within the class. For
instance: public function getFirstName() { return $this->firstName; } Setter methods
modify properties, and allow extra logic to be added to prevent properties from being
set to strange values. For example, we might only set a date property if the setter was
passed an acceptable date: The below example demonstrates how the Artist class could
be used and tested

[05] CO

4
L

2

 5

(b)
Explain serialization with examples.
Serialization is the process of taking a complicated object and reducing it down to

zeros and ones for either storage or transmission. Later that sequence of zeros and

ones can be reconstituted into the original object.

In PHP objects can easily be reduced down to a binary string using the serialize()function.

The resulting string is a binary representation of the object and thereforemay contain

unprintable characters. The string can be reconstituted back into anobject using the

unserialize() method.While arrays, strings, and other primitive types will be serializable by

default, classesof our own creation must implement the Serializable interface shown below.

[05]
CO

5

L

2

which requires adding implementations for serialize() and unserialize() to anyclass that

implements this interface.

interface Serializable {

/* Methods */

public function serialize();

public function unserialize($serialized);

}

shows how the Artist class must be modified to implement theSerializable interface by adding

the implements keyword to the class definitionand adding implementations for the two

methods.

listing 13.4 Artist class modified to implement the Serializable interface

class Artist implements Serializable {

//...

// Implement the Serializable interface methods

public function serialize() {

// use the built-in PHP serialize function

return serialize(

array("earliest" =>self::$earliestDate,

"first" => $this->firstName,

"last" => $this->lastName,

"bdate" => $this->birthDate,

"ddate" => $this->deathDate,

"bcity" => $this->birthCity,

"works" => $this->artworks

);

);

}

public function unserialize($data) {

// use the built-in PHP unserialize function

$data = unserialize($data);

self::$earliestDate = $data['earliest'];

$this->firstName = $data['first'];

$this->lastName = $data['last'];

$this->birthDate = $data['bdate'];

$this->deathDate = $data['ddate'];

$this->birthCity = $data['bcity'];

$this->artworks = $data['works'];

}

//...

}

If the data above is assignedto $data, then the following line will instantiate a new object

identical to the

original:

$picassoClone = unserialize($data);

6

(a)
Briefly explain inheritance in PHP with neat class diagram.
Inheritance Along with encapsulation, inheritance is one of the three key concepts in
object oriented design and programming Inheritance enables you to create new PHP
classes that reuse, extend, and modify the behavior that is defined in another PHP class.
Although some languages allow it, PHP only allows you to inherit from one class at a
time. A class that is inheriting from another class is said to be a subclass or a derived
class. The class that is being inherited from is typically called a superclass or a base class.
When a class inherits from another class, it inherits all of its public and protected
methods and properties. Figure 10.9 illustrates how inheritance is shown in a UML class
diagram. Just as in Java, a PHP class is defined as a subclass by using the extends
keyword. class Painting extends Art { . . . } Referencing Base Class Members As
mentioned above, a subclass inherits the public and protected members of the base
class. Thus in the following code based on Figure 10.9, both of the references will work
because it is as if the base class public members are defined within the subclass. $p =
new Painting(); . . . // these references are ok echo $p->getName(); // defined in base
class echo $p->getMedium(); // defined in subclass Unlike in languages like Java or C#, in
PHP any reference to a member in the base class requires the addition of the parent::
prefix instead of the $this-> prefix. So within the Painting class, a reference to the
getName() method would be: parent::getName() It is important to note that private
members in the base class are not available to its subclasses. Thus, within the Painting
class, a reference like the following would not work. $abc = parent::name; // would not
work within the Painting class If you want a member to be available to subclasses but
not anywhere else, you can use the protected access modifier, which is shown in Figure
10.10. Inheriting Methods Every method defined in the base/parent class can be
overridden when extending a class, by declaring a function with the same name. A
simple example of overriding can be found in Listing 10.8 in which each subclass
overrides the __toString() method. To access a public or protected method or property
defined within a base class from within a subclass, you do so by refixing the member
name with parent::. So to access the parent’s __toString() method you would simply use
parent::__toString().

[05] CO

4
L

2

6(b

)
Write a PHP program to create a class STUDENT with the following

specification.

Data members: Name, Roll number, Average marks

Member function: Read(getters) and write (setters)

Use the above specification to read and print the information of 2 students.

[05

]

CO

4
L

3

OUTPUT:

