USN | | | &
-) CMRIT
Internal Assessment Test 3 — DEC 2021
Sub: | MACHINE LEARNING Cosd“etf 17cs73 BrANCh | oo o 1sE
Date: | 27/1/2022 Duration: = 90 mins M;\ﬂ:‘ 5o | Sem/sec 7™MD OBE
Answer any FIVE FULL Questions MARK [CO |RB
S T
1 (a) Discuss Naive Based Classifier with an example. [10] CO3 L2
2 (a) Define Bayer’s theorem and MAP? Derive an equation for Brute force MAP [10] CO2 L1
algorithm using Bayer’s theorem.
3 (a) Discuss MDL (Minimum Description Length) in brief. [10] CO2 L2
4 (a) Explain K-nearest neighbor learning algorithm in brief. [10] CO3 L2
5(a) Explain the Bayesian belief network and conditional independence with an [10] CO3 L2
example.
6 (a) Explain locally weighted linear regression. [10] CO2 L2
1 (a) Discuss Naive Based Classifier with an example. [10] CO3| L2

The naive Bayes classifier applies to learning tasks where each instance x is described by a conjunction
of attribute values and where the target function f (x) can take on any value from some finite set V.

e A set of training examples of the target function is provided, and a new instance is presented,
described by the tuple of attribute values (al, a2.. .am).

e The learner is asked to predict the target value, or classification, for this new instance.

The Bayesian approach to classifying the new instance is to assign the most probable target value,
VMAP, given the attribute values (al, a2.. .am) that describe the instance

The Bayesian approach to classifying the new instance is to assign the most probable target value,
Vmap, given the attribute values (ai, az.. .am) that describe the instance

vmap = argmax P(vjlay,az...an)
vjEV
Use Bayes theorem to rewrite this expression as

P(ay,ay...ax|v;)P(vj)

Upyap = argmax

veV P(al, az...a,,)
= argmax P(al,az...a,,lvj)P(vj) equ (1)
vjEV

e The naive Bayes classifier is based on the assumption that the attribute values are
conditionally independent given the target value. Means, the assumption is that given
thetargetvalueoftheinstance,theprobabilityofobservingtheconjunction(ai,az...am), is just the
product of the probabilities for the individualattributes:

P(a1,az...a,lv;) = []; P(ailvy)

Substituting this into Equation (1),

Naive Bayes classifier:

Vg = argmax P(v;) n P(a;i|v;) equ (2)
vieV i

Where, Vng denotes the target value output by the naive Bayes classifier An Illustrative Example
e Let us apply the naive Bayes classifier to a concept learning problem i.e., classifying days
according to whether someone will playtennis.
e Thebelowtableprovidesasetofl4trainingexamplesofthetargetconceptPlayTennis, where
each day is described by the attributes Outlook, Temperature, Humidity, and Wind

D Outloo | Temperatur = Humidit =~ Win PlayTenni

ay k e y d S
D1 Sunny Hot High Wea No
k
D2 Sunny Hot High Stron No
g
D3 Overca Hot High Wea Yes
st k
D4 Rain Mild High Wea Yes
k
D5 Rain Cool Normal Wea Yes
k
D6 Rain Cool Normal Stron No
g
D7 Overca Cool Normal Stron Yes
st g
D8 Sunny Mild High Wea No
k

D9 Sunny Cool Normal Wea Yes

D
10
D
11
D
12
D
13
D
14

Rain
Sunny

Overca
st

Overca
st

Rain

Mild

Mild

Mild

Hot

Mild

Normal
Normal
High
Normal

High

k

Wea
k
Stron
g
Stron
g
Wea
k
Stron

g

Yes

Yes

Yes

Yes

No

e Use the naive Bayes classifier and the training data from this table to classify the

following novelinstance:
< Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong >

VnB = argmax P(vj) P(Outlook=sunny|v;) P(Temperature=cool|v;)
P(Humidity=high|v;) P(Wind=strong|v;)
e OQur task is to predict the target value (yes or no) of the target concept

PlayTennisfor this newinstanceThe probabilities of the different target values
can easily be estimated based on their frequencies over the 14 training examples

VnB = argmax P(vj) n P(ai|vj)
Vj € {yes .no}

Vj € {yes ,no}

e P(PlayTennis = yes) = 9/14 =0.64
e P(PlayTennis = no) = 5/14 =0.36

Similarly, estimate the conditional probabilities. For example, those for Wind = strong

i

e P(Wind = strong | PlayTennis = yes) = 3/9 =0.33
e P(Wind = strong | PlayTennis = no) = 3/5 = 0.60

Calculate Vng according to Equation(1)

P(yes) P(sunny|yes) P(cool|yes) P(high|yes) P(strong|yes)
P(no) P(sunny|no) P(cool|no) P(high|no) P(strong|no)

Thus, the naive Bayes classifier assigns the target value PlayTennis = no to this new
instance, based on the probability estimates learned from the training data.

0053
0206

By normalizing the above quantities to sum to one, calculate the conditional probability that the
target value is no, given the observed attribute values

0206
(.0206 + .0053)

= 795

2 (a) Define Bayer’s theorem and MAP? Derive an equation for Brute force MAP algorithm using Bayer’s
theorem.

Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior
probability, the probabilities of observing various data given the hypothesis, and the observed
data itself.
Notations
e P(h) prior probability of h, reflects any background knowledge about the chance that h is
correct
P(D) prior probability of D, probability that D will be observed
P(DJh) probability of observing D given a world in which h holds
e P(h|D) posterior probability of h, reflects confidence that h holds after D has been
observed

Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to
calculate the posterior probability P(h|D), from the prior probability P(h), together with P(D) and
P(D|h).

Bayes Theorem:

P(D|h)P(h)
P(D)

P(h|D) =

e P(h|D) increases with P(h) and with P(D|h) according to Bayestheorem.
e P(h|D) decreases as P(D) increases, because the more probable it is that D will be
observed independent of h, the less evidence D provides in support ofh.

e In many learning scenarios, the learner considers some set of candidate hypotheses H and
is interested in finding the most probable hypothesis h € H given the observed data
D. Any such maximally probable hypothesis is called a maximum a posteriori (MAP)
hypothesis.

e Bayes theorem to calculate the posterior probabilityofeachcandidatehypothesisishmap is a
MAP hypothesisprovided

harap = argmax P(h|D)

heH
- ~P(D|h)P(h)
= uz/_(ljé)]z[u.) PD)
= argmax P(D|h)P(h)
heH

e P(D) can be dropped, because it is a constant independent of h

BRUTE-FORCE MAP LEARNING algorithm:

1. For each hypothesis h in H, calculate the posteriorprobability
P(D|h)P(h)
P(D)

P(h|D) =

2. Output the hypothesis hmap with the highest posteriorprobability

harap = argmax P(h|D)
he H

In order specify a learning problem for the BRUTE-FORCE MAP LEARNING algorithm we
must specify what values are to be used for P(h) and for P(D|h) ?

Let’s choose P(h) and for P(D|h) to be consistent with the following assumptions:
e The training data D is noise free (i.e., di =c(xi))
e The target concept c is contained in the hypothesis spaceH

Do not have a priori reason to believe that any hypothesis is more probable than any other.

What values should we specify for P(h)?
e Given no prior knowledge that one hypothesis is more likely than another, it is reasonable
to assign the same prior probability to every hypothesis h inH.
e Assume the target concept is contained in H and require that these prior probabilities sum
tol.

|
Pih) = %l forallh € H

What choice shall we make for P(D|h)?
e P(D|h) is the probability of observing the target values D = (d: . . .dm) for the fixed set of
instances (X1 . . . Xm), given a world in which hypothesis hholds
e Since we assume noise-free training data, the probability of observing classification di
given his just 1 if di = h(x;) and O if di # h(xi). Therefore,

1 ifd; = h(x;) foralld; € D
POk =
0 otherwise

P(D) = Y P(DIh;)P(h;)

heH

GiventhesechoicesforP(h)andforP(D|h)wenowhaveafully-definedproblemfortheabove BRUTE-
FORCE MAP LEARNINGalgorithm.

Recalling Bayes theorem, we have

P(D|h)P(h)

P(h|D) =
Consider the case where h is inconsistent with the training data D
P(h|D) = 0. P(h) -0
P(D)

The posterior probability of a hypothesis inconsistent with D is zero

Consider the case where h is consistent with D

1. L 1. L .
P(hDy=— 1AL _ _ T _ 1
P(D) ~ Wsupl = |VSp p]

Where, VShp is the subset of hypotheses from H that are consistent with D

To summarize, Bayes theorem implies that the posterior probability P(h|D) under our assumed P(h)
and P(DJh) is

1

vi—— If h is consistent with D
H.D

P(h\D) =
0 otherwise

The Evolution of Probabilities Associated withHypotheses

3.Discuss MDL (Minimum Description Length) in brief.

MINIMUM DESCRIPTION LENGTH PRINCIPLE

® A Bayesian perspective on Occam’srazor
e Motivated by interpreting the definition of hmap in the light of basic concepts from
informationtheory.

harap = argmaz P(D|h)P(h)
heH

which can be equivalently expressed in terms of maximizing the log:
hyrap = argmaz logy P(D|h) 4 log, P(h)
h€eH

or alternatively, minimizing the negative of this quantity

hayrap = argmin — logy P(D|h) — log, P(h) equ (1)
heH

This equation (1) can be interpreted as a statement that short hypotheses are preferred, assuming a
particular representation scheme for encoding hypotheses and data

e -logz2P(h): the description length of h under the optimal encoding for the hypothesis space
H, Lch (h) = —logoP(h), where Ch is the optimal code for hypothesis spaceH.

e -log2P(D|h):thedescriptionlengthofthetrainingdataDgivenhypothesish,underthe optimal
encoding from the hypothesis space H: Lcn (DJh) = —1og2P(D| h) , where C pp is the
optimal code for describing data D assuming that both the sender and receiver know the
hypothesish.

e RewriteEquation(1)toshowthathmaristhehypothesishthatminimizesthesumgiven by the
description length of the hypothesis plus the description length of the data given
thehypothesis.

hyrap = argmin Loy (h) + Lo, (D|h)

DI}
heH b

Where, Cn and Cpyn are the optimal encodings for H and for D given h The Minimum
Description Length (MDL) principle recommends choosing the hypothesis that minimizes the
sum of these two description lengths of equ.

hyvap = argmin Loy (h) + LCD[h(D|h)
heH

Minimum Description Length principle:

hmpL = argmin Le, (h) + L¢ (D | h)
heH }

Where, codes C; and C» to represent the hypothesis and the data given the hypothesis

The above analysis shows that if we choose C; to be the optimal encoding of hypotheses Cx, and
if we choose Cx to be the optimal encoding Cpp, then hvpL = hvap

3. Explain K-nearest neighbor learning algorithm in brief.

k- NEAREST NEIGHBOR LEARNING

e The most basic instance-based method is the K- Nearest Neighbor Learning. This algorithm
assumes all instances correspond to points in the n-dimensional space R".

e The nearest neighbors of an instance are defined in terms of the standard Euclidean distance.
e Letan arbitrary instance x be described by the feature vector

((a1(x), a2(x), «........ , an(x))

Where, a(x) denotes the value of the r'" attribute of instance x.

e Then the distance between two instances x; and x; is defined to be d(xi , Xj)
Where,

d(xi, %)) = \I Y (@) — ar(x))?
r=1

e In nearest-neighbor learning the target function may be either discrete-valued or real- valued.

Let us first consider learning discrete-valued target functions of the form

f:R" -V
Where, V is the finite set {v1, ... Vs }

The k- Nearest Neighbor algorithm for approximation a discrete-valued target function is
given below:

Training algorithm:
e For each traiming example {x, f(x)), add the example to the list training_examples
Classification algorithm:
e Given a query instance x, to be classified,
o Let x;...x dénote the k instances from training examples that are nearest to x4
Return

uel

k
fag) < argmax) "5(v. flx)
=l

where &(a, b) = 1 if @ = b and where §(a, b) = 0 otherwise.

The value fxq) returned by this algorithm as its estimate of f(xq) is just the most common
value of f among the k training examples nearest to Xq.

If k = 1, then the 1- Nearest Neighbor algorithm assigns to fXq) the value f(xi). Where xi is the
training instance nearest to Xq.

For larger values of k, the algorithm assigns the most common value among the k nearest
training examples.

e Below figure illustrates the operation of the k-Nearest Neighbor algorithm for the case where the
instances are points in a two-dimensional space and where the target function is Boolean valued.

The positive and negative training examples are shown by “+” and “-” respectively. A

query point Xq is shown as well.
The 1-Nearest Neighbor algorithm classifies xq as a positive example in this figure, whereas
the 5-Nearest Neighbor algorithm classifies it as a negative example.

e Below figure shows the shape of this decision surface induced by 1- Nearest Neighbor over the
entire instance space. The decision surface is a combination of convex polyhedra surrounding each
of the training examples.

For every training example, the polyhedron indicates the set of query points whose
classification will be completely determined by that training example. Query points outside
the polyhedron are closer to some other training example. This kind of diagram is often called
the Voronoi diagram of the set of training example

The K- Nearest Neighbor algorithm for approximation a real-valued target function is given belo
fior >R
Training algorithm:
e For each training example {x, f(x)), add the example to the list training_examples
Classification algorithm:

» Given a query instance x, to be classified,
o Let x;...x; denote the k instances from training _examples that are nearest o x,

Return
S)
k

flxp) «

Distance-Weighted Nearest Neighbor Algorithm

e The refinement to the k-NEAREST NEIGHBOR Algorithm is to weight the contribution of
each of the k neighbors according to their distance to the query point Xq, giving greater weight
to closer neighbors.

e For example, in the k-Nearest Neighbor algorithm, which approximates discrete-valued target
functions, we might weight the vote of each neighbor according to the inverse square of its
distance from xq

Distance-Weighted Nearest Neighbor Algorithm for approximation a discrete-valued target functions

Training algorithm:

e For each training example (x, f(x)), add the example to the list rraining_examples
Classification algorithm:

o Given a query instance x, to be classified,

e Let x;...x; denote the k instances from training_examples that are nearest to x,4
e Return

k
flxg) < argmax > wid(v, f(x:))

i=1

where 1

= d(xg, x;)?

Distance-Weighted Nearest Neighbor Algorithm for approximation a Real-valued target functions

Training algorithm:
e For each training example (x, f(x)), add the example to the list training_examples

Classification algorithm:
o Given a query instance x, to be classified,
e Let x;...x; denote the k instances from training_examples that are nearest to x,

e Return X
f‘.‘(x) (_ Zi:l wif(xi)
q
Zf:l w;
where 1
wj

= d(x,, %)

Terminology

e Regression means approximating a real-valued target function.
e Residual is the error fx) - f (x) in approximating the target function.

e Kernel function is the function of distance that is used to determine the weight of each training
example. In other words, the kernel function is the function K such that
wi = K(d(Xi, Xq))

Explain the Bayesian belief network and conditional independence with an example.

A Bayesian belief network represents the joint probability distribution for a set of variables. Bayesian
networks (BN) are represented by directed acyclic graphs.

S,B S,~B =SB -S-B
c 04 01 08 0.2
-C 06 09 02 0.8

The Bayesian network in above figure represents the joint probability distribution over the boolean
variables Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup

A Bayesian network (BN) represents the joint probability distribution by specifying a set of

conditional independence assumptions

e BN represented by a directed acyclic graph, together with sets of local conditional
probabilities
Each variable in the joint space is represented by a node in the Bayesiannetwork
The network arcs represent the assertion that the variable is conditionally independent of its
non-descendants in the network given its immediate predecessors in thenetwork.

e A conditional probability table (CPT) is given for each variable, describing the probability
distribution for that variable given the values of its immediatepredecessors

The joint probability for any desired assignment of values (yi, . . . ,yn) to the tuple of network
variables (Y1 ... Ym) can be computed by the formula

P(y1, ..., ya) = | | PGilParents(¥y))

i=l1
Where, Parents(Yi) denotes the set of immediate predecessors of Y; in the network.

Example:

ConsiderthenodeCampfire. ThenetworknodesandarcsrepresenttheassertionthatCampfire IS
conditionally independent of its non-descendants Lightning and Thunder, given its immediate

parents Storm and BusTourGroup.

SB S,~B =SB -S-B
C 04 01 08 0.2
-C 06 09 02 0.8

This means that once we know the value of the variables Storm and BusTourGroup, the variables
Lightning and Thunder provide no additional information about Campfire
The conditional probability table associated with the variable Campfire. The assertion is

P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4
Inference

e UseaBayesiannetworktoinferthevalueofsometargetvariable(e.g.,ForestFire)given the observed
values of the othervariables.

e Inference can be straightforward if values for all of the other variables in the network are
knownexactly.

e A Bayesian network can be used to compute the probability distribution for any subset of
network variables given the values or distributions for any subset of the remaining variables.

e An arbitrary Bayesian network is known to beNP-hard Learning Bayesian Belief Networks

Affective algorithms can be considered for learning Bayesian belief networks from training data by
considering several different settings for learning problem
> First,thenetworkstructuremightbegiveninadvance,oritmighthavetobeinferredfrom the training
data.
> Second, all the network variables might be directly observable in each training example, or some
might be unobservable.

e In the case where the network structure is given in advance and the variables are fully
observable in the training examples, learning the conditional probability tables is
straightforward and estimate the conditional probability tableentries

e In the case where the network structure is given but only some of the variable values
areobservableinthetrainingdata,thelearningproblemismoredifficult. Thelearning problem can
be compared to learning weights for anANN.

Gradient Ascent Training of Bayesian Network

The gradient ascent rule which maximizes P(D|h) by following the gradient of In P(D|h) with
respecttotheparametersthatdefinetheconditionalprobabilitytablesoftheBayesiannetwork.

Let wijk denote a single entry in one of the conditional probability tables. In particular wijx denote the
conditional probability that the network variable Y; will take on the value yi, given that its immediate
parents Ui take on the values given by uik.

31n P(D|h)
The gradient of In P(D|h) is given by the derivatives = 9wix for each of the wijk. As
shown below, each of these derivatives can be calculatedas

dln P(D|h) . Z P(Y; = yij, Ui = uixld)

equ(l)
S qu(

deD Wi jk

Py (D)

Derive the gradient defined by the setofderivatives Awis

for all i, j, and k. Assuming the

alnf(x) 1 3f(x) . We can now

This last step makes use of the general equality o T
introduce the values of the variables ¥; and U; = Parents(Y), by summing over

their possible values y;; and wu;p.

d1n P,(D) 1
—_———— — P(d ,’,u; ’)P i ’ul ')
8w;jk ‘; Ph(d) 3w Wik Zk:, h Iy] k h(yj k

= Pr(@\yij, wir) Pr(ij | wir) P (i)
Z Ph(d) awuk Z,c, d g '

deD

This last step follows from the product rule of probability . Now consider
the rightmost sum in the final expression above. Given that w;jx = Py (yij j |uix), the
only term in this sum for which -—w—— is nonzero is the term for which j' = j and

ijk
i" = i. Therefore
training examples d in the data set D are drawn independently, we write this derivativeas We write
the abbreviation Pn(D) to represent P(Dh).

dIn Py (D)
aw,-jk

1 d
= Pyp(d\yij, wix) Pn(yijluix) Pn(u;
;Ph(d) it w(d1yij, Uik) -h()'1|u1k) n(Uik)

1 3
deX,;Phw Gwg 2@ 1iis i) Wiji Pyie)

— Ph(dlyl s Wi) Pp(uix)
;:, P, (d) g

Applying Bayes theorem to rewrite P,(d|y;;, u;;), we have

0 In P,(D) _ Z 1 Py(yij, uik|d) Po(d) Pn(uix)
GRT: =5 Pr(d) Py(¥ij» wik)

3 Z Py (yij, wik|d) Py (uix)

—

— Py (yij» uix)

_ Z P (yij, uikld)

=5 Pn(yijluic)

- Z Ph()’x]’ uikld)

equ (2)
deD Wijk

Thus, we have derived the gradient given in Equation (1). There is one more
item that must be considered before we can state the gradient ascent training
procedure. In particular, we require that as the weights w;j; are updated they
must remain valid probabilities in the interval [0,1]. We also require that the
sum) w;j; remains 1 for all i, k. These constraints can be satisfied by updating
weights in a two-step process. First we update each w;j; by gradient ascent

Py(yij, uix|d)
Wijk < Wijk + 1 z cAlek
deD Wi jk

where n is a small constant called the learning rate. Second, we renormalize
the weights w;j; to assure that the above constraints are satisfied.

this process will converge to a locally maximum likelihood hypothesis for the
conditional probabilities in the Bayesian network.

Explain locally weighted linear regression.

LOCALLY WEIGHTED REGRESSION

e The phrase "locally weighted regression” is called local because the function is
approximated based only on data near the query point, weighted because the contribution of
each training example is weighted by its distance from the query point, and regression
because this is the term used widely in the statistical learning community for the problem of
approximating real-valued functions.

e Given a new query instance Xq, the general approach in locally weighted regression is to
construct an approximation fthat fits the training examples in the neighborhood surrounding Xq.

This approximation is then used to calculate the value {xq), which is output as the estimated
target value for the query instance.

Locally Weighted Linear Regression

e Consider locally weighted regression in which the target function f is approximated near Xq
using a linear function of the form

~

f(x) =wo+wia1(x) + - - - + wpas(x)

Where, ai(x) denotes the value of the i attribute of the instance x

e Derived methods are used to choose weights that minimize the squared error summed over the
set D of training examples using gradient descent

1 a
2
==Y (f@) - F(x)
2
xeD
Which led us to the gradient descent training rule

Aw; =n) (f(x) — fx)ajx)
xeD
Where, 1 is a constant learning rate

e Need to modify this procedure to derive a local approximation rather than a global one. The
simple way is to redefine the error criterion E to emphasize fitting the local training examples.
Three possible criteria are given below.

1. Minimize the squared error over just the k nearest neighbors:

1 A
Ei(x,) = (f(x) — f(x))? equi)

2 x€ k nearest nbrs of xq4
2. Minimize the squared error over the entire set D of training examples, while weighting the
error of each training example by some decreasing function K of its distance from Xq :

5 1 A
Ex(xg) = 5) (f() = f())? K@, %) equey
3. Combine 1 and 2: *ep

1 A
E3(xg) = 5 (f(x) — f(x))* K(d(xg, X)) cqni®)

x€ k nearest nbrs of x,

If we choose criterion three and re-derive the gradient descent rule, we obtain the following training rule

Aw; =1 > K (d(xg, %)) (f(x) — f(x)) a;(x)

X€ k nearest nbrs of x,

The differences between this new rule and the rule given by Equation (3) are that the contribution of
instance X to the weight update is now multiplied by the distance penalty K(d(Xq, X)), and that the error is
summed over only the k nearest training examples.

