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1 (a) Discuss Naive Based Classifier with an example. [10] CO3 L2 

2 (a) Define Bayer’s theorem and MAP? Derive an equation for Brute force MAP 

algorithm using Bayer’s theorem.  

[10] CO2 L1 

3 (a)  Discuss MDL (Minimum Description Length) in brief. [10] CO2 L2 

4 (a) Explain K-nearest neighbor learning algorithm in brief. [10] CO3 L2 

5 (a) Explain the Bayesian belief network and conditional independence with an 

example. 

[10] CO3 L2 

6 (a) Explain locally weighted linear regression. [10] CO2 L2 

 

 

 

 

1 (a) Discuss Naive Based Classifier with an example. [10] CO3 L2 

The naive Bayes classifier applies to learning tasks where each instance x is described by a conjunction 

of attribute values and where the target function f (x) can take on any value from some finite set V.  

  A set of training examples of the target function is provided, and a new instance is presented, 

described by the tuple of attribute values (al, a2.. .am).  

  The learner is asked to predict the target value, or classification, for this new instance. 

The Bayesian approach to classifying the new instance is to assign the most probable target value, 

VMAP, given the attribute values (al, a2.. .am) that describe the instance 

The Bayesian approach to classifying the new instance is to assign the most probable target value, 

VMAP, given the attribute values (al, a2.. .am) that describe the instance 

Use Bayes theorem to rewrite this expression as 

 



 

 

● The naive Bayes classifier is based on the assumption that the attribute values are 

conditionally independent given the target value. Means, the assumption is that given 

thetargetvalueoftheinstance,theprobabilityofobservingtheconjunction(al,a2...am), is just the 

product of the probabilities for the individualattributes: 

Substituting this into Equation (1), 

 

Naive Bayes classifier: 

 

Where, VNB denotes the target value output by the naive Bayes classifier An Illustrative Example 

● Let us apply the naive Bayes classifier to a concept learning problem i.e., classifying days 

according to whether someone will playtennis. 

● Thebelowtableprovidesasetof14trainingexamplesofthetargetconceptPlayTennis, where 

each day is described by the attributes Outlook, Temperature, Humidity, and Wind 
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D1 Sunny Hot High Wea

k 

No 

D2 Sunny Hot High Stron
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No 
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Hot High Wea
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Yes 

D4 Rain Mild High Wea
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D5 Rain Cool Normal Wea
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D6 Rain Cool Normal Stron
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● Use the naive Bayes classifier and the training data from this table to classify the 

following novelinstance: 

< Outlook = sunny, Temperature = cool, Humidity = high, Wind = strong > 

 

● Our task is to predict the target value (yes or no) of the target concept 

PlayTennisfor this newinstanceThe probabilities of the different target values 

can easily be estimated based on their frequencies over the 14 training examples 

● P(P1ayTennis = yes) = 9/14 =0.64 

● P(P1ayTennis = no) = 5/14 =0.36 

 

Similarly, estimate the conditional probabilities. For example, those for Wind = strong 

● P(Wind = strong | PlayTennis = yes) = 3/9 =0.33 

● P(Wind = strong | PlayTennis = no) = 3/5 = 0.60 

Calculate VNB according to Equation(1) 

 

 

 

Thus, the naive Bayes classifier assigns the target value PlayTennis = no to this new 

instance, based on the probability estimates learned from the training data. 

 

By normalizing the above quantities to sum to one, calculate the conditional probability that the 

target value is no, given the observed attribute values 

 



 

2 (a) Define Bayer’s theorem and MAP? Derive an equation for Brute force MAP algorithm using Bayer’s 

theorem.  

Bayes theorem provides a way to calculate the probability of a hypothesis based on its prior 

probability, the probabilities of observing various data given the hypothesis, and the observed 

data itself. 

Notations 

● P(h) prior probability of h, reflects any background knowledge about the chance that h is 

correct 

● P(D) prior probability of D, probability that D will be observed 

● P(D|h) probability of observing D given a world in which h holds 

● P(h|D) posterior probability of h, reflects confidence that h holds after D has been 

observed 

 

Bayes theorem is the cornerstone of Bayesian learning methods because it provides a way to 

calculate the posterior probability P(h|D), from the prior probability P(h), together with P(D) and 

P(D|h). 

 

● P(h|D) increases with P(h) and with P(D|h) according to Bayestheorem. 

● P(h|D) decreases as P(D) increases, because the more probable it is that D will be 

observed independent of h, the less evidence D provides in support ofh. 

 

● In many learning scenarios, the learner considers some set of candidate hypotheses H and 

is interested in finding the most probable hypothesis h ∈ H given the observed data 

D. Any such maximally probable hypothesis is called a maximum a posteriori (MAP) 

hypothesis. 

● Bayes theorem to calculate the posterior probabilityofeachcandidatehypothesisishMAP is a 

MAP hypothesisprovided 

 

 

 

● P(D) can be dropped, because it is a constant independent of h 

 

BRUTE-FORCE MAP LEARNING algorithm: 



 

1. For each hypothesis h in H, calculate the posteriorprobability 

 

2. Output the hypothesis hMAP with the highest posteriorprobability 

 

 

In order specify a learning problem for the BRUTE-FORCE MAP LEARNING algorithm we 

must specify what values are to be used for P(h) and for P(D|h) ? 

 

Let’s choose P(h) and for P(D|h) to be consistent with the following assumptions: 

● The training data D is noise free (i.e., di =c(xi)) 

● The target concept c is contained in the hypothesis spaceH 

● Do not have a priori reason to believe that any hypothesis is more probable than any other. 

● What values should we specify for P(h)? 

● Given no prior knowledge that one hypothesis is more likely than another, it is reasonable 

to assign the same prior probability to every hypothesis h inH. 

● Assume the target concept is contained in H and require that these prior probabilities sum 

to1. 

 
 

What choice shall we make for P(D|h)? 

● P(D|h) is the probability of observing the target values D = (d1 . . .dm) for the fixed set of 

instances (x1 . . . xm), given a world in which hypothesis hholds 

● Since we assume noise-free training data, the probability of observing classification di 

given h is just 1 if di = h(xi) and 0 if di ≠ h(xi).Therefore, 

 



 
 

GiventhesechoicesforP(h)andforP(D|h)wenowhaveafully-definedproblemfortheabove BRUTE-

FORCE MAP LEARNINGalgorithm. 

 

 

Recalling Bayes theorem, we have 

 

Consider the case where h is inconsistent with the training data D 

 

The posterior probability of a hypothesis inconsistent with D is zero 

 

Consider the case where h is consistent with D 

Where, VSH,D is the subset of hypotheses from H that are consistent with D 

 

To summarize, Bayes theorem implies that the posterior probability P(h|D) under our assumed P(h) 

and P(D|h) is 

 

 

 
 

 The Evolution of Probabilities Associated withHypotheses 

 



3.Discuss MDL (Minimum Description Length) in brief. 

 

MINIMUM DESCRIPTION LENGTH PRINCIPLE 

 

● A Bayesian perspective on Occam’srazor 

● Motivated by interpreting the definition of hMAP in the light of basic concepts from 

informationtheory. 

 

which can be equivalently expressed in terms of maximizing the log2 

 
 

or alternatively, minimizing the negative of this quantity 

 

This equation (1) can be interpreted as a statement that short hypotheses are preferred, assuming a 

particular representation scheme for encoding hypotheses and data 

 

● -log2P(h): the description length of h under the optimal encoding for the hypothesis space 

H, LCH (h) = −log2P(h), where CH is the optimal code for hypothesis spaceH. 

● -log2P(D|h):thedescriptionlengthofthetrainingdataDgivenhypothesish,underthe optimal 

encoding from the hypothesis space H: LCH (D|h) = −log2P(D| h) , where C D|h is the 

optimal code for describing data D assuming that both the sender and receiver know the 

hypothesish. 

● RewriteEquation(1)toshowthathMAPisthehypothesishthatminimizesthesumgiven by the 

description length of the hypothesis plus the description length of the data given 

thehypothesis. 

 

Where, CH and CD|h are the optimal encodings for H and for D given h The Minimum 

Description Length (MDL) principle recommends choosing the hypothesis that minimizes the 

sum of these two description lengths of equ. 

 

Minimum Description Length principle: 

 

Where, codes C1 and C2 to represent the hypothesis and the data given the hypothesis 

 

The above analysis shows that if we choose C1 to be the optimal encoding of hypotheses CH, and 

if we choose C2 to be the optimal encoding CD|h, then hMDL = hMAP 



 

 

3. Explain K-nearest neighbor learning algorithm in brief. 

 

 

k- NEAREST NEIGHBOR LEARNING 

 

 The most basic instance-based method is the K- Nearest Neighbor Learning. This algorithm 

assumes all instances correspond to points in the n-dimensional space Rn. 

 The nearest neighbors of an instance are defined in terms of the standard Euclidean distance. 

 Let an arbitrary instance x be described by the feature vector 

((a1(x), a2(x), ………, an(x)) 

Where, ar(x) denotes the value of the rth attribute of instance x. 
 

 Then the distance between two instances xi and xj is defined to be d(xi , xj ) 

Where, 

 In nearest-neighbor learning the target function may be either discrete-valued or real- valued. 

 

 

 

Let us first consider learning discrete-valued target functions of the form 

Where, V is the finite set {v1, . . . vs } 

The k- Nearest Neighbor algorithm for approximation a discrete-valued target function is 

given below: 

 

 

 

 



 The  value  �̂�(xq)  returned  by  this  algorithm  as  its  estimate  of  f(xq)  is  just  the  most common 

value of f among the k training examples nearest to xq. 

 If k = 1, then the 1- Nearest Neighbor algorithm assigns to �̂�(xq) the value f(xi). Where xi is the 

training instance nearest to xq. 

 For larger values of k, the algorithm assigns the most common value among the k nearest 

training examples. 

 

 Below figure illustrates the operation of the k-Nearest Neighbor algorithm for the case where the 

instances are points in a two-dimensional space and where the target function is Boolean valued. 

 The positive and negative training examples are shown by “+” and “-” respectively. A 

query point xq is shown as well. 

 The 1-Nearest Neighbor algorithm classifies xq as a positive example in this figure, whereas 

the 5-Nearest Neighbor algorithm classifies it as a negative example. 

 

 Below figure shows the shape of this decision surface induced by 1- Nearest Neighbor over the 

entire instance space. The decision surface is a combination of convex polyhedra surrounding each 

of the training examples. 

 

 For every training example, the polyhedron indicates the set of query points whose 

classification will be completely determined by that training example. Query points outside 

the polyhedron are closer to some other training example. This kind of diagram is often called 

the Voronoi diagram of the set of training example 



w                      

The K- Nearest Neighbor algorithm for approximation a real-valued target function is given belo 

 

 

 

 

 

Distance-Weighted Nearest Neighbor Algorithm 

 

 The refinement to the k-NEAREST NEIGHBOR Algorithm is to weight the contribution of 

each of the k neighbors according to their distance to the query point xq, giving greater weight 

to closer neighbors. 

 For example, in the k-Nearest Neighbor algorithm, which approximates discrete-valued target 

functions, we might weight the vote of each neighbor according to the inverse square of its 

distance from xq 

 

 

Distance-Weighted Nearest Neighbor Algorithm for approximation a discrete-valued target functions 

 



Distance-Weighted Nearest Neighbor Algorithm for approximation a Real-valued target functions 

 

 

 

 

 

Terminology 

 

 Regression means approximating a real-valued target function. 

 Residual is the error �̂�(x) - f (x) in approximating the target function. 

 Kernel function is the function of distance that is used to determine the weight of each training 

example. In other words, the kernel function is the function K such that 

wi = K(d(xi, xq)) 
 

Explain the Bayesian belief network and conditional independence with an example. 

 

 

A Bayesian belief network represents the joint probability distribution for a set of variables. Bayesian 

networks (BN) are represented by directed acyclic graphs. 

 

 

 

The Bayesian network in above figure represents the joint probability distribution over the boolean 

variables Storm, Lightning, Thunder, ForestFire, Campfire, and BusTourGroup 

 

A Bayesian network (BN) represents the joint probability distribution by specifying a set of 



conditional independence assumptions 

● BN represented by a directed acyclic graph, together with sets of local conditional 

probabilities 

● Each variable in the joint space is represented by a node in the Bayesiannetwork 

● The network arcs represent the assertion that the variable is conditionally independent of its 

non-descendants in the network given its immediate predecessors in thenetwork. 

● A conditional probability table (CPT) is given for each variable, describing the probability 

distribution for that variable given the values of its immediatepredecessors  

The joint probability for any desired assignment of values (y1, . . . ,yn) to the tuple of network 

variables (Y1 . . . Ym) can be computed by the formula 

 

Where, Parents(Yi) denotes the set of immediate predecessors of Yi in the network. 

 

 

Example: 

ConsiderthenodeCampfire.ThenetworknodesandarcsrepresenttheassertionthatCampfire is 

conditionally independent of its non-descendants Lightning and Thunder, given its immediate 

parents Storm and BusTourGroup. 

 
 

This means that once we know the value of the variables Storm and BusTourGroup, the variables 

Lightning and Thunder provide no additional information about Campfire 

The conditional probability table associated with the variable Campfire. The assertion is 

P(Campfire = True | Storm = True, BusTourGroup = True) = 0.4 

Inference 

 

● UseaBayesiannetworktoinferthevalueofsometargetvariable(e.g.,ForestFire)given the observed 

values of the othervariables. 

● Inference can be straightforward if values for all of the other variables in the network are 

knownexactly. 

● A Bayesian network can be used to compute the probability distribution for any subset of 

network variables given the values or distributions for any subset of the remaining variables. 

● An arbitrary Bayesian network is known to beNP-hard Learning Bayesian Belief Networks 



 

Affective algorithms can be considered for learning Bayesian belief networks from training data by 

considering several different settings for learning problem 

⮚ First,thenetworkstructuremightbegiveninadvance,oritmighthavetobeinferredfrom the training 

data. 

⮚ Second, all the network variables might be directly observable in each training example, or some 

might be unobservable. 

● In the case where the network structure is given in advance and the variables are fully 

observable in the training examples, learning the conditional probability tables is 

straightforward and estimate the conditional probability tableentries 

● In the case where the network structure is given but only some of the variable values 

areobservableinthetrainingdata,thelearningproblemismoredifficult.Thelearning problem can 

be compared to learning weights for anANN. 

 

Gradient Ascent Training of Bayesian Network 

 

The gradient ascent rule which maximizes P(D|h) by following the gradient of ln P(D|h) with 

respecttotheparametersthatdefinetheconditionalprobabilitytablesoftheBayesiannetwork. 

 

Let wijk denote a single entry in one of the conditional probability tables. In particular wijk denote the 

conditional probability that the network variable Yi will take on the value yi, given that its immediate 

parents Ui take on the values given by uik. 

The gradient of ln P(D|h) is given by the derivatives  for each of the wijk. As 

shown below, each of these derivatives can be calculatedas 

 

 



Derive the gradient defined by the setofderivatives for all i, j, and k. Assuming the 

training examples d in the data set D are drawn independently, we write this derivativeas We write 

the abbreviation Ph(D) to represent P(D|h). 

 

 
 



 

 

 
 

 

Explain locally weighted linear regression. 

 

 

LOCALLY WEIGHTED REGRESSION 

 

 The phrase "locally weighted regression" is called local because the function is 

approximated based only on data near the query point, weighted because the contribution of 

each training example is weighted by its distance from the query point, and regression 

because this is the term used widely in the statistical learning community for the problem of 

approximating real-valued functions. 

 

 Given a new query instance xq, the general approach in locally weighted regression is to 

construct an approximation �̂� that fits the training examples in the neighborhood surrounding xq. 

This approximation is then used to calculate the value �̂�(xq), which is output as the estimated 

target value for the query instance. 



 

Locally Weighted Linear Regression 

 

 Consider locally weighted regression in which the target function f is approximated near xq 

using a linear function of the form 

 
Where, ai(x) denotes the value of the ith attribute of the instance x 

  

 Derived methods are used to choose weights that minimize the squared error summed over the 

set D of training examples using gradient descent 

 
Which led us to the gradient descent training rule 

Where, η is a constant learning rate 

 

 Need to modify this procedure to derive a local approximation rather than a global one. The 

simple way is to redefine the error criterion E to emphasize fitting the local training examples. 

Three possible criteria are given below. 

 

1. Minimize the squared error over just the k nearest neighbors: 

 

2. Minimize the squared error over the entire set D of training examples, while weighting the 

error of each training example by some decreasing function K of its distance from xq : 

 

3. Combine 1 and 2: 

 

 



 

If we choose criterion three and re-derive the gradient descent rule, we obtain the following training rule 

 
 

The differences between this new rule and the rule given by Equation (3) are that the contribution of 

instance x to the weight update is now multiplied by the distance penalty K(d(xq, x)), and that the error is 

summed over only the k nearest training examples. 

 

 



 

 


