Scheme of Evaluation

Internal Assessment Test 3 — Jan 2022

Sub: Unix Programming Code: 18CS56
Max . .
Date: | 25/1/2022 Duration: | 90mins | Marks: | 50 sem: |V Branch: ISE
Note: Answer Any five full questions.
Question Description Marks Distribution Max
Marks
a) Explain with neat diagram memory layout of C
program.
1 Diagram 3M ™
Explanation AM
b) Briefly discuss the different functions used for 10M
memory allocation
Prototype with
1 1M*3 3M
malloc
calloc
realloc
a) Compare and contrast ‘fork' and 'vfork' system
2 call with syntax and example. 1M*6 6M
Any 6 differences
b) Write a program to explain setjmp and longjmp
APlIs . 10M
Main() 1M
2 Setjmp() M M
Longjmp 1M
output M

What are pipes? What are its limitations? Write
a program to send a data from parent to child
over a pipe

Pipe-definition M
Limitation M
3M 10M
Program
b) What are Interpreter Files? Give the difference
between Interpreter Files and Interpreter. 1M*3 3M
Any three differences
a) Discuss popen and pclose functions with syntax
and proper example. M
Prototype 2M 6M
Usage M
example
b) What is FIFO? Explain the client server
communication using FIFO 10M
Diagram oM
Explanation oM AM
a) Write a program to set up a signal hander for
SIGINT and SIGALARM
Signal handler for SIGINT 2M
Signal handler for SIGALARM 2M 6M
Calling handler 2M
10M
b) What are signals? Mention different sources of
signals with name and description.
Signal Definition 4M
M

Any three signal names and description

1M*3

What is daemon process? Enlist its

characteristics and coding rules. 1M

Daemon process M

Daemon process characteristics oM 5M
Coding rules

b) What is error logging? With a neat block

schematic discuss the error login facility in BSD 1M

Error logging 2M oM
Diagram 2M

Explanation

10M

Q. 1 a) Explain with neat diagram memory layout of C program.

MEMORY LAYOUT OF A C PROGRAM

Historically, a C program has been composed of the following pieces:

Text segment, the machine instructions that the CPU executes. Usually, the text segment is sharable
so that only a single copy needs to be in memory for frequently executed programs, such as text editors,
the C compiler, the shells, and so on. Also, the text segment is often read-only, to prevent a program
from accidentally modifying its instructions.
Initialized data segment, usually called simply the data segment, containing variables that are
specifically initialized in the program. For example, the C declaration
int maxcount = 99;
appearing outside any function causes this variable to be stored in the initialized data segment with its
initial value.
¢ Uninitialized data segment, often called the "bss" segment, named afier an ancient assembler
operator that stood for "block started by symbol." Data in this segment is initialized by the kernel
to arithmetic 0 or null pointers before the program starts executing. The C declaration
long sum[1000];

appearing outside any function causes this variable to be stored in the uninitialized data segment.

Stack, where automatic variables are stored, along with information that is saved each time a
function is called. Each time a function is called, the address of where to return to and certain
information about the caller's environment, such as some of the machine registers, are saved on the
stack. The newly called function then allocates room on the stack for its automatic and temporary
variables. This is how recursive functions in C can work. Each time a recursive function calls itself,
a new stack frame is used, so one set of variables doesn't interfere with the variables from another
instance of the function.

Heap, where dynamic memory allocation usually takes place. Historically, the heap has been
located between the uninitialized data and the stack.

high address command-line arguments
and environment variables

stack

uninitialized data initialized to
(bss) zero by exec

inibalized data road from

program file
text by exec

low address

Q.1 b) Briefly discuss the different functions used for memory allocation with syntax

MEMORY ALLOCATION
ISO C specifies three functions for memory allocation:

« malloc, which allocates a specified number of bytes of memory. The initial value of the memory is
indeterminate.

e calloc, which allocates space for a specified number of objects of a specified size. The space is
initialized to all 0 bits.

e realloc, which increases or decreases the size of a previously allocated area. When the size increases,
it may involve moving the previously allocated area somewhere else, to provide the additional room

#include <stdlib.h>

void *malloc(size t size);

void *calloc(size t nobj, size t size);
wvoid *realloc(void *ptr, size t newsize) ;

Q.2 a) Compare and contrast 'fork' and 'vfork' system call with syntax and example.
fork FUNCTION

An existing process can create a new one by calling the forkfunction.

#include <unistd.h>
pid_t fork (void);

Returns: 0 in child, process ID of child in parent, 1 on error.

The new process created by forkis called the child process.

This function is called once but returns twice.

The only difference in the returns is that the return value in the child is 0, whereas the return value in
the parent is the process ID of the new child.

The reason the child's process ID is returned to the parent is that a process can have more than one
child, and there is no function that allows a process to obtain the process [Ds of its children.

The reason fork returns 0 to the child is that a process can have only a single parent, and the child can
always call getppid to obtain the process ID of its parent. (Process ID 0 is reserved for use by the kernel,
so it's not possible for 0 to be the process ID of a child.)

Both the chiid amd tire parem cominte executing with the frstraction tha fottows te catt o fok
The child is a copy of the parent.

For example, the child gets a copy of the parent's data space, heap, and stack.
Note that this is a copy for the child; the parent and the child do not share these portions of memory.

The parent and the child share the text segment .

vfork FUNCTION

¥" The function vforkhas the same calling sequence and same return values as fork.

v The viork function is intended to create a new process when the purpose of the new process is to exec
a new program.

v" The vfork function creates the new process, just like fork, without copying the address space of the
parent into the child, as the child won't reference that address space; the child simply calls exec (or
exif) right after the vfork.

v Instead, while the child is running and until it calls either exec or exit, the child runs in the address
space of the parent. This optimization provides an efficiency gain on some paged virtual-memory
implementations of the UNIX System.

v

Another difference between the two functions is that vfork guarantees that the child runs first, until
the child calls execor exit. When the child calls either of these functions, the parent resumes.

Example of viorkfunction

#include "apue.h"
int glob = 6; /* external variable in initialized data */

int main(void)

{
int var; /* automatic variable on the stack */
pid t pid;

var=88;
printf("'before vfork\n'); /*we don't flush stdio */ if
((pid = vfork()) < 0) {
err_sys('"'vfork error');
} else if (pid =10) { /* child */
glob++; /* modify parent's variables */
var++;
_exit(0); /* child terminates */
)
,,".*
* Parent continues here.
*/
printf("pid = %d, glob= %d, var = %d\n", getpid(), glob, var);
exit(0);
}

UL[[HLII...
$ Ja.out

before viork
pid = 29039, glob= 7, var= 89

Q. 2b) Write a program to explain setjmp and longjmp APIs .
/I A simple C program to demonstrate working of setjmp() and longjmp()
#include<stdio.h>
#include<setjmp.h>
jmp_buf buf;
void func()
{ printf("Welcome to GeeksforGeeks\n");
/l Jump to the point setup by setjmp
longjmp(buf, 1);
printf("Geek2\n");
}
/I A simple C program to demonstrate working of setjmp() and longjmp()
#include<stdio.h>
#include<setjmp.h>
jmp_buf buf;
void func()
{ printf("Welcome to GeeksforGeeks\n");
/I Jump to the point setup by setjmp
longjmp(buf, 1);

printf("Geek2\n");

int main()

[/ Setup jump position using buf and return 0
if (setjmp(buf))
printf("Geek3\n");

else

printf("Geek4\n");

func();

}

return O;

}
Output :

Geek4
Welcome to GeeksforGeeks
Geek3

Q. 3 a) What are pipes? What are its limitations? Write a program to send a data from parent to
child over a pipe

PIPES
Pipes are the oldest form of UNIX System IPC. Pipes have two limitations.

P Historically, they have been half duplex (i.e., data flows in only one direction).
P> Pipes can be used only between processes that have a common ancestor. Normally, a pipe is created by
a process, that process calls fork, and the pipe is used between the parent and the child.
A pipe is created by calling the pipefunction.
#include <unistd.h>

int pipe(int filedes[2]);
Returns: 0 if OK, 1 on error.

int

main (void
)
{
int n;

int fd|2];
pid_t pid;
char linefMAXLINE];

if (pipe(fd) <0) err_sys(" pipe
error');
if ((pid = fork()) <0) {
err_sys("fork error");

} else if (pid > 0) { / *parent */
close(fd[0]);
write(fd[1], "hello world\n", 12);

} else { / *child */
close(fd[1]);

n = read(fd[0], line, MAXLINE);
write(STDOUT _FILENO, line,
n);

}

exit(0);

Q. 3b) What are Interpreter Files? Give the difference between Interpreter Files and Interpreter.

INTERPRETER FILES

These files are text files that begin with a line of the form
#! pathname | optional-argument |

The space between the exclamation point and the pathname is optional. The most common of these interpreter
files begin with the line
#!/bin/sh

The pathname is normally an absolute pathname, since no special operations are performed on it (i.e., PATH
is not used). The recognition of these files is done within the kernel as part of processing the exec system call.
The actual file that gets executed by the kemel is not the interpreter file, but the file specified by the pathname
on the first line of the interpreter file. Be sure to differentiate between the interpreter filea text file that begins
with #!and the interpreter, which is specified by the pathname on the first line of the interpreter file.

A program that execs an interpreter file

#include "apue.h"
#include <sys/wait.h>

Int main(void)

{

;

pid t pid;

if ((pid = fork()) <0) {
err_sys("'fork error");

} else if (pid ==0) { /* child */
if (execl(''/home/sar/bin/testinterp",

"testinterp", "myargl", "MY ARG2", (char *)0) <
0) err_sys("'execl error'');

}

if (waitpid(pid, NULL, 0) < 0) /* parent */
err_sys("'waitpid error'');

exit(0);

Output:

$ cat /home/sar/bin/testinterp
#!/home/sar/bin/echoarg foo

$./a.out

argv[0]: /home/sar/bin/echoarg
argv[1]: foo

argv[2]: /home/sar/bin/testinterp
argv|[3]: myargl

argv[4]: MY ARG2

Q. 4 a) Discuss popen and pclose functions with syntax and proper example.

popen AND pcloseFUNCTIONS

Since a common operation is to create a pipe to another process, to either read its output or send it input, the
standard 1/O library has historically provided the popen and pclose functions. These two functions handle all
the dirty work that we've been doing ourselves: creating a pipe, forking a child, closing the unused ends of the
pipe, executing a shell to run the command, and waiting for the command to terminate.

#include <stdio.h>

FILE *popen (const char *cmdstring, const char *type);

Returns: file pointer if OK, NULLon error

int pclose(FILE *fp);

Returns: termination status of cmdstring, or 1 on error

The function popendoes a forkand execto execute the cmdstring, and returns a standard 1/O file pointer. Iftype
is "r", the file pointer is connected to the standard output of cmdstring

Figure 15.9. Result of fp = popen(cmdstring, "r")

parent cmdstring (child)

£fp ja— — stdonut

If type is "w", the file pointer is connected to the standard input of cmdstring, as shown:

Figure 15.10. Result of fp = popen(cmdstring, "w')

parent cimudstring (child)

] sHciN

My
kJ

Q. 4 b)What is FIFO? Explain the client server communication using FIFO

Example Client-Server Communication Using a FIFO

FIFO’s can be used to send data between a client and a server. If we have a server that is contacted by
numerous clients, each client can write its request to a well-known FIFO that the server creates. Since
there are multiple writers for the FIFO, the requests sent by the clients to the server need to be less
than PIPE_BUF bytes in size.

This prevents any interleaving of the client writes. The problem in using FIFOs for this type of client
server communication is how to send replies back from the server to each client.

A single FIFO can’t be used, as the clients would never know when to read their response versus
responses for other clients. One solution is for each client to send its process ID with the request. The
server then creates a unique FIFO for each client, using a pathname based on the client’sprocess ID.
For example, the server can create a FIFO with the name /vtu/ ser. XXXXX, where XXXXX is replaced
with the client’s process 1D. This arrangement works, although it is impossible for the server to tell
whether a client crashes. This causes the client-specific FIFOs to be left in the file system.

The server also must catch SIGPIPE, since it’s possible for a client to send a request and terminate
before reading the response, leaving the client-specific FIFO with one writer (the server) and no reader.

/j server L

read|requests

(client-specific | well-known client-specific
FIFO FIFO FIFO

read replies read replies

client il client

Figure 15.23. Client-server communication using FIFOs

Q. 5 a) Write a program to set up a signal hander for SIGINT and SIGALARM

#include<iostream.h>
#include<signal.h>

/*signal handler function*/
Void catch_sig(int signum)

{

signal (sig_num,catch_sig);

cout<<"catch_sig:"<<signum<<endl;

}

/*main function*/
int main ()

{

signal(SIGINT, catch_sig);
signal(SIGALARM, catch_sig);
pause();

}

Q.5 b) What are signals? Mention different sources of signals with name and description.

Signals are software interrupts. Signals provide a way of handling asynchronous events: a user ata
terminal typing the interrupt key to stop a program or the next program in a pipeline terminating
prematurely.

Name
SIGABRT
SIGALRM
SIGBUS

SIGCANC
EL

SIGCHLD
SIGCONT
SIGEMT
SIGFPE

Description

abnormal termination (abort)
timer expired (alarm)
hardware fault

threads library internal use

change in status of child
continue stopped process
hardware fault

arithmetic exception

SIGFREEZ checkpoint freeze

E
SIGHUP

SIGILL
SIGINFO
SIGINT

hangup

illegal instruction

status request from keyboard
terminal interrupt character

Default action
terminate+core
terminate

terminate+core

ignore

ignore

continue/ignore
terminate+core
terminate+core

ignore

terminate
terminate+core
ignore
terminate

Q. 6 a) What is daemon process? Enlist its characteristics and coding rules.

Daemons are processes that live for a long time. They are often started when the system is bootstrapped

and terminate only when the system is shut down.

DAEMON CHARACTERISTICS

The characteristics of daemons are:

= Daemons run in background.
= Daemons have super-user privilege.

= Daemons don’t have controlling terminal.

= Daemons are session and group leaders.

CODING RULES

= Call umask to set the file mode creation mask to 0. The file mode creation mask that's inherited
could be set to deny certain permissions. If the daemon process is going to create files, it may want to
set specific permissions.

= (Call fork and have the parent exit. This does several things. First, if the daemon was started as a
simple shell command, having the parent terminate makes the shell think that the command is done.
Second, the child inherits the process group ID of the parent but gets a new process ID, so we're
guaranteed that the child is not a process group leader.

= (Call setsid to create a new session. The process (a) becomes a session leader of a new session, (b)
becomes the process group leader of a new process group, and (c) has no controlling terminal.

= Change the current working directory to the root directory. The current working directory
inherited from the parent could be on a mounted file system. Since daemons normally exist until the
system is rebooted, ifthe daemon stays on a mounted file system, that file system cannot be unmounted.

= Unneeded file descriptors should be closed. This prevents the daemon from holding open any
descriptors that it may have inherited from its parent.

= Some daemons open file descriptors 0, 1, and 2 to /dev/null so that any library routines that try
to read from standard input or write to standard output or standard error will have no effect.
Since the daemon is not associated with a terminal device, there is nowhere for output to be displayed;
nor is there anywhere to receive input from an interactive user. Even if the daemon was started from
an interactive session, the daemon runs in the background, and the login session can terminate without
affecting the daemon. If other users log in on the same terminal device, we wouldn't want output from
the daemon showing up on the terminal, and the users wouldn't expect their input to be read by the
daemon.

Q.6 b) What is error logging? With a neat block schematic discuss the error login facility in BSD

ERROR LOGGING

One problem a daemon has is how to handle error messages. It can't simply write to standard error, since it
shouldn't have a controlling terminal. We don't want all the daemons writing to the console device, since on
many workstations, the console device runs a windowing system. A central daemon error-logging facility is
required.

Figure 13.2. The BSD sys10q fadlity

written to file or
to logged-in users or
sent to another host

| n
1 "
uDP
1 ., [
: /dev/leg port 514 /dev/klog -
| UNIX domain [nternet domain : :
1 datagram socket datagram socket 109! v
| "
I v
| kemel .
| rountnes '

| e ——
| k 1 -JI

TCP/IP network

There are three ways to generate log messages:

= Kernel routines can call the logfunction. These messages can be read by any user process that opens
and
reads the /dev/klogdevice.
= Most user processes (daemons) call the syslog(3) function to generate log messages. This causes the
message to be sent to the UNIX domain datagram socket /dev/log.
= A user process on this host, or on some other host that is connected to this host by a TCP/IP network,
can send log messages to UDP port 514. Note that the syslog function never generates these UDP
datagrams: they require explicit network programming by the process generating the log message.

