

$Internal\ Assesment\ Test-I$

Sub:	Information Theory and Coding			Sec	ALL				Code:	18EC54
Date:	12 / 11 / 2021	Duration:	90 mii	ns :	Max Marks:	50	Sem:	V	Branch:	ECE

	Answer Any FIVE FULL Questions	Marks	OBE			
	Answer Any TTVL TOLL Questions	Marks	CO	RBT		
1	Define the terms Self information content, average information content,	10	CO1	L1		
	average rate of information and hence derive the expression for average					
	information content in long independent sequences.					
2	Mention different properties of entropy and prove extremal property.	10	CO1	L2		
3	Define self-information, entropy and information rate. Consider	10	CO1	L3		
	transmission of pictures in a black and white television, there are about					
	3.25 <i>Megapixels/frame</i> . For a good reproduction, 20 brightness levels are					
	necessary. Assuming that all the levels are equally likely to occur, find the					
	rate of transmission if one frame is transmitted in every 3 msec.					
4	Obtain the relationship between Hartley, nats and bits. Consider a discrete	10	CO1	L2		
	memory less source with $S = \{s_1, s_2, s_3, s_4\}$ with $P = \{0.5, 0.2, 0.2, 0.1\}$ show					
	that $H(S^2) = 2H(S)$.					
5	For the markov model shown the fig. 5, compute State probabilities, State	10	CO1	L4		
	entropies, Source entropy and Average rate of information if the symbol rate					
	is 1000 symbols/sec.					
	1/2					
	y ₄					
	12 (B) (C) 12					
	1/2					
	76-					
_	Fig. 5	10	004	1.0		
6		10	CO1	L3		
	$G_2 \geq H$.					
	1/4					
	C 3/4					
	$\begin{pmatrix} 74 \\ a \end{pmatrix}$ 1 $\begin{pmatrix} 2 \\ b \end{pmatrix}$					
	$p_1 = \frac{1}{2}$ $p_2 = \frac{1}{2}$					
	Fig. 6					

_____***___

		IAT	-1 5	COLUTIO	<u> </u>		
SELF	- INFOR	MATION	I CONT	ENT:			
let M	Kle a	symbol	forte	ansmissin	n at an	y instar	t of time w
proba	bility !	Px', ther	i amo	unt of in	formatic	n (or) s	ell informati
0/1	Ux" is	$I_{\kappa} = $	log 1	luts or	Ir= log	_ Hartle	t of time wi elf informati y or 1x=log_1 & 1x
<i>ν</i>			02 PK	·····	, 010	PK 0	Je fx
AVERA	GE INF	ORMATTON	V CONT	ENT:	y		
Supp	ase we	have as	lourie,	that envi	rone of	m'sym	bols 51,52,
Ma	stalistic	ally in	depende	ent ander			
Let p	1, 02, 83,	Pm	be the	probabil	ty of our	crawe of	l ur symbol
resper	itively,	Herefor	e, in a	long m	ssage of	Nsymbo	l ur symbol ls,
Sim	ill aun	rouan	avera	ge of PIN	times	,	
1.0			//	age of Pal	, ,		,,,
			(
Si W	ull our	rowau	anera	age of fil	1 times		,
Treat	ting in	linidual	symb	ols as m	ssage of	length 1,	then the it
Sym	bel in	ermation	w court	tent mill	lle		
0		I(si)=					
		1-44	0~	ri			
\Rightarrow	(total) =	= 3/1	Nlog	- luts			
		<i>ι=1</i>	0~	Pi		······	······
I	Hotal) =	NSI	ilog,	luts			
		6=1		ri —	M.	0 1 1	
···········	Entropy	Hor H	(5)) =	I (total)	= A Z	Viloga Pi	- leits/sym.
***************************************	10			N		Υ	<i>-</i>
······	∴ H=	Z Pilo	9,11	lute <i>lsy</i> nn	. Jul	rage in	ormation cont
		i=1' (ri		(Ent	ropy) of i	ong independe
					sequ	ueures.	0 '
					·		

-	
	If a source emits symbol at a fined time vate its symbols per sword, then the average rate of information is given by is and is a surface of the second of t
	nerved they the arms water of information is aimen by his
,	and Po - " 11/c) 1:+//
-	MUN NS - JUSTICE) OUR / SEC.
,	PROPERTIES OF TATAON.
1	PROPERTIES OF ENTROPY:
-	PROPERTY O: The entropy function is continuous for every value of variable of over the interval (0,1)
	of variable of over the interval (0,1)
	PROPERTY @ The entropy funtion is symmetrical of its arguments
1	PROPERTY®: The entropy funtion is symmetrical of its arguments $H[f_K, (I-f_K)] = H[(I-f_K), f_K]$ for every $K=1,2,,m$ where m is number of symbols
	is number of symbols
	PROPERTY 3: Solutting a symbol into sub-eymbols does not
	decrease the uncertaintly of the soune (: H' >H)
	PROPERTY @: Splitting a symbol into sub-eymbols does not decrease the invertainity of the source (:: H' \geq H) PROPERTY @: EXTREMIAL PROPERTY:
	(To show entropy has boundary)
	Consider a discrete memoryless source. The entropy H(s) is
	bounded by 0 \le H(S) \le [H(S) man]
	The law on boundary is oberiously O lon Pr = 1
	The lawer boundary is cliniously Ofor Px = 1. For ugger boundary, let us consider a quantity.
	log M-H 0
1	MI all with
	H= E fi log f lills/sym2
	M 0 1 3
ŀ	$\sum_{i=1}^{\infty} i = 1$
	J. 1 11 m 0- lan 11 m 0. lan 1
	log m-H= E Pi log m- E Pi log - Fi
	MI O C dans de la
	= = Pi [log2m-log2 ti]
į.	= \(\frac{\mathbb{M}}{i=1} \rightarrow log_2 \ m\rho_i = \frac{\mathbb{M}}{i=1} \rightarrow log_2 \ \ \ i=1 \log_2 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	i=1
ľ	10
	$\int_{a}^{a} \int_{a}^{b} \int_{a$

Let	Mx be a similal for transmission at any instant of time
w	the probability 'or' they arrount of information (or) self
in	Mx he a symbol for transmission at my instant of time the probability 'px' then amount of information (or) self formation of mx is given by Ix
0	There - Par 1
	$I(mk) = log \frac{1}{R}$
E	NTROPY :
Contract Contract	pose we have a sowne that anits one of 'm' symbols 91,50
12	&m in a statistically indecendent order
11	- 0. 00 00 la
111	whole accept the blue probability of allegance of the
Jan Jan	trong of the single the survey of the Use
-u	waying a roug marginaline sequences is quentity of or 115)
	Mols respectively, then average information soutent (or tropy of long independent sequences is given by H or H/s) H = 1 li log - Luts/sym
11/	FIRMATION RATE:
41	HUKMATION RATE:
4	a source emits symbol at a fined time rate is symbols in second, then the average rate of information is Rs and Rs = rsH(s) luts/sec
pe	a second them the average have of information is its
u	W RS-JUSHD) LUM JELL V
J. Ta	tal musical dische en la serie a serie : 1 11
= 100	tal number of finals per frame is 3.25 Megapinels /frame
	= 3.25×10° fixels / frame
1.	u to given they law clement (am have al) how, althous
lei	uls, then, total number of different frames possible are $m = (80)^{3.25 \times 1000}$ frames
10	$m = (80)^{3.23 \times 1802}$ frames
7 LU	us assume all the frames ours at equal probability
10	en, Wkt, the entropy is given by H(s)man.
	H(S)man = log m 3.25×106
	$= \log_{2}^{3} (20)^{3.25 \times 10^{6}}$
	$= (3.25\times10^6)\log_2(20)$
	= 14.046 X/0° luts/frames
	= 14.046 × 106 luts /frames : H(S)man = 14.046 × 106 luts /frames duerage rate of information = Rs = rsH(S)mass
	surage rate of information = Rs = rsH(s)man
- 1	V / /


```
Ginen Ms = 3 frames /sec.

.: Rs = Ms H(s) = 1 (14.046 × 106) =
                                                       4682000 lists/sec
                Rs = 4682000 lits/sec.
  I = log ti lute, I = log to nate, I = log to the Hantley
   Equating them, logs to - logo to = logo to
Hantley to lite
                | Hartley = loge Fi = log 10 = 2.3025
                                       : Martley = 2.3025 nats
                                    8 and P= {0.5, 0.2, 0.2, 0.1 }
        = 0.5 \log_2 \frac{1}{0.5} + 0.2 \log_2 \frac{1}{0.2} + 0.2 \log_2 \frac{1}{0.2} + 0.1 \log_2 \frac{1}{0.1}
        = 0.5 + 0.9287 + 0.3321 = 1.76089 lite/sym
                 :H(5) = 1.76089 luts /sym.
```



```
2H(5) = 2 X 1.76089 lits/sum
                     2H(s)= 3.52178 lits/sym.
IN SECOND EXTENSION => (4)
 SISI => PIPI = 0-25
                                                       S351 ⇒
 SIS2 => PIP2 = 0.1
                                                      5353 =>
 5154 => PIP4 = 0.05
                                                      5354 => P3/4
 Sa S1 => P2P1 = 0.1
                                                       S4S1 =>
5252 → P2P2 = 0.04
                                                                                   0.02
SaS3 = PaP3 = 0.04
                                                                               = 0.02
                                                     5453 > P4B
                                                                              = 0.01
S2S4 → P2P4 = 0.02
                                                      S454 => P+P4
               H(S^2) = \underset{j=1}{\overset{\sim}{\succeq}} \int_{S^2} \int_{S^2} \log_2 \frac{1}{f_j}
 H(5²) = Iifi log (!/Iifi) + Pila log (!/Pila) + Pila log (!/Pila) + Pila log (!/Pila)

+ Pali log (!/Pali) + Pala log (!/Pala) + Pala log (!/Pala) + Pala log (!/Pala)

+ Pali log (!/Pali) + Pala log (!/Pala) + Pala log (!/Pala) + Pala log (!/Pala)

+ Pali log (!/Pali) + Pala log (!/Pala) + Pala log (!/Pala) + Pala log (!/Pala)
H(5^{2}) = 0.25 \log_{2}(1/6.25) + 4[0.1\log_{2}(1/6.1)] + 2[0.05\log_{2}(\frac{1}{0.05})] + 4[0.04\log_{2}(1/6.04)] + 4[0.02\log_{2}(\frac{1}{0.02})] + 0.01\log_{2}(\frac{1}{0.01})
 H(52) = 0.5+1.3287+0.4321+0.74301+0.4515+0.06643
                       H(52) = 3.527 lita/sym.
       : From O and @ > H(52) = 24(5)
                                             Herre Proned
```

AS)


```
P(B) = \frac{1}{2}P(B) + \frac{1}{2}P(A) \Rightarrow P(B) = P(A)
          P(C) = \(\frac{1}{2}\right P(C) + \frac{1}{4}\right P(B) => P(C) = \(\frac{1}{2}\right P(A)\)
        P(A) = \frac{2}{2} , P(B) = \frac{2}{5} , P(C) = \frac{1}{5}
STATE ENTROPIES: Hi = Pij log (1) bits /sym
For A: HA = P_{AA} log_2\left(\frac{1}{P_{AA}}\right) + P_{AB} log_2\left(\frac{1}{P_{AB}}\right) + P_{AC} log_2\left(\frac{1}{P_{AC}}\right)
= \frac{1}{2} log_2\left(2\right) + \frac{1}{2} log_2\left(2\right) + \frac{1}{4} log_2\left(4\right)
               1a = 3% liits /Sym.
1a = Pea loga (Paa) + Pae loga (Paa) + Pac loga (Pac)
                        (1) log (4) + (1) log (2) +
                  = 1 lists/sym.
= Pca log2 (Pca) + Pco log2 (Pco) + Pcc log2 (Pcc)
                             ) \log_2 2 + 0 + (1) \log_2 (2)
                             into/sym.

Y: H= = laHa+ PBHB + PoHc

12 × 3)+(2 × 1)+(
                                                          H = 1.2 lists/sym
                            1000 syns/sec
                                                1200 lits/sec
To show that, G1 > G12 > H
```


	I interval	II internal	CMR
	Symbol Probability	Sym (3)2	Probability
	1 3/8 /	ab=0 aa	7/32
	b 9/8 c \(\frac{1}{4} + \frac{1}{4} = \frac{2}{2}	40 61	3/32
	3+3+2=1	ba=0 € Tc	9/32 3/32
	8 9 7 8 T	Ca	732 3/32
		Cb	3/32
	,	66	1 + 1 = 2
=	GW = N Silmi log2 Pm	i	
		······	
	(91 = 1 = 1 Pmi log 1	= Pa dog 1 + Pb log 1	+ Po log 1
	i=a Pmi	$r_a = r_a = r_b$	12 Pc
	=	= 3 log 8 + 3 log 8	+2 log 8
		= 0.5306 + 0.5306 + 0.5	
	: G1 = 1.56/2		/
	612 = 1 = 1 Pm: log 1		
	2 i=a Papnii		
	= 1 laa log 1 + lab log 2	1 + Pac log 1 + Pho log 1	+Pss log_
	a L faa on	ab Plac Papa	702 66
	+ Pbc log 1 + Pca log	for the log 1 + Package	ful -
	- 1 [(1/2) log [32]) X2 +1	(0 log (0)) X 2 + ((3) log (3))	VA
	2/11/2/2/2/11/10/1	(32) My (32)	X4
		+(32) log2(32)	
	= <u> </u>	147 +0.3201+ 0.3201+0.3	201+0.25
	&	_ 2	
	2	799	
	Grá	z = 1.2799	
			,
	<mark>∴</mark> G1≥ G1૨≥ I	7	