CMR INSTITUTE OF TECHNOLOGY USN Internal Assessment Test-I Sub: Electromagnetic Waves Code: 18EC55 Date: 13/11 /2021 Duration: 90 mins Max Marks: 50 Sem: 5th Branch: ECE(A,B,C,D) Solutions **Marks OBE** CO RBT 1.(a) State and explain Coulomb's law in vector form. [06] CO1 L1

(b) A charge Q_A of -20 μ C is located at A (-6,4,7) and a second charge Q_B of 50 μ C is located at $B(5,8,-2)$. Find force on Q_B due to charge Q_A . Assume both the charges are placed in free space. [04] CO1 L3

$$
A(-6, 4, 7)
$$
\n
$$
B(5, 8, -2)
$$
\n
$$
B_{AB} = C\left(1 + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}\right) = 9\frac{1}{4}
$$
\n
$$
B(5, 8, -2)
$$
\n
$$
B_{AB} = C\left(1 + \frac{1}{4} + \frac{1}{4} + \frac{1}{4}\right) = 9\frac{1}{4}
$$
\n
$$
B_{AB} = B_{B} = 50 \text{ pc}
$$
\n
$$
B_{AB} = \sqrt{\frac{1}{4} + \frac{1}{4} + \frac{1}{4}} = 9\frac{1}{4}
$$
\n
$$
B_{AB} = -11\frac{1}{4} + \frac{1}{4}\frac{1}{4} = 9\frac{1}{4}
$$
\n
$$
B_{AB} = -11\frac{1}{4} + \frac{1}{4}\frac{1}{4} = 9\frac{1}{4}
$$

$$
F_{BA} = \frac{1}{4\pi \times 10}9 \times \frac{-20\times 10^{6} \times 50\times 10^{6}}{(14.36)^{2}} \times \frac{11\overline{a_{x}} + 4\overline{a_{y}} - 9\overline{a_{z}}}{(14.36)^{2}}
$$

$$
F_{BA} = (-30.18 \overline{a_{x}} - 11.195 \overline{a_{y}} + 25.189 \overline{a_{z}}) \times 10^{-3} N
$$

$$
F_{BA} = (-30.18 \overline{a_{x}} - 11.195 \overline{a_{y}} + 25.189 \overline{a_{z}}) m N
$$

2. Define electric field intensity. Obtain an expression for electric field intensity due to an infinitely long uniform line charge distribution. [02+08] CO1 L1

12
$$
dx
$$

\n24 dx
\n26 dx
\n27 dx
\n38 dx
\n49 dx
\n50 dx
\n61 dx
\n72 dx
\n83 dx
\n94 dx
\n10 0 0,0)
\n11 dx
\n12 dx
\n13 dx
\n14 dx
\n15 dx
\n16 dx
\n17 dx
\n18 dx
\n19 dx
\n10 dx
\n11 dx
\n12 dx
\n13 dx
\n14 dx
\n15 dx
\n16 dx
\n17 dx
\n18 dx
\n19 dx
\n10 dx
\n11 dx
\n12 dx
\n13 dx
\n14 dx
\n15 dx
\n16 $(x^3 + 2x^2)^3$
\n17 dx
\n18 dx
\n19 dx
\n10 dx
\n11 dx
\n12 dx
\n13 dx
\n14 dx
\n15 dx
\n16 $(x^3 + 2x^2)^{3/2}$
\n17 dx
\n18 dx
\n19 dx
\n10 dx
\n11 dx
\n12 dx
\n13 dx
\n14 dx
\n15 dx
\n16 $(x^3 + 2x^3)^{3/2}$
\n17 dx
\n18 dx
\n19 dx <

3.(a) Define electric flux density. Derive the relation between electric flux density and electric field intensity. [04] CO2 L1

The direction of D at a pt, and the
\nfunction of the flux time of the no. If
\nline lines are not the negative, and the negative distance are
\nthe lines divergent by the surface area
\n
$$
\begin{aligned}\n\overrightarrow{B} &= \frac{a}{4\pi a^{2}} \quad \overrightarrow{a}
$$
\n(inner-plane area)
\n
$$
\overrightarrow{B} &= \frac{a}{4\pi a^{2}} \quad \overrightarrow{a}
$$
\n(inner-plane area)
\n
$$
a \le x \le k
$$
\n
$$
\overrightarrow{B} = \frac{a}{4\pi a^{2}} \quad \overrightarrow{a}
$$
\n(under the plane of the plane)
\n
$$
B = \frac{a}{4\pi a^{2}} \quad \overrightarrow{a}
$$
\n
$$
\overrightarrow{B} = \frac{a}{4\pi a^{2}} \quad \overrightarrow{a}
$$
\n
$$
\overrightarrow{B} = \frac{a}{4\pi a^{2}} \quad \overrightarrow{a}
$$
\n
$$
\overrightarrow{B} = \frac{a}{4\pi a^{2}} \quad \overrightarrow{a}
$$
\n
$$
\overrightarrow{B} = \frac{a}{4\pi a^{2}} \quad \overrightarrow{a}
$$
\n
$$
\overrightarrow{B} = \frac{a}{4\pi a^{2}} \quad \overrightarrow{A} = \frac{a}{4\pi a^{2}} \quad \overrightarrow{
$$

3. (b) i. A uniform line charge of infinite length with $\rho_L = 40$ nC/m, lies along the z-axis. Find \bf{E} at $(-2,2,8)$ in air. [06] CO2 L3

$$
\frac{\rho_1^{'}}{R} = \frac{1}{2a_x} + 2\frac{a_y}{a_y}
$$
\n
$$
\frac{\rho_2}{R} = -2a_x + 2a_y
$$
\n
$$
\frac{\rho_1}{R} = \frac{1}{2a_x} - \frac{1}{2a_y} + \frac{1}{2a_y}
$$
\n
$$
\frac{\rho_1}{E} = \frac{1}{2a_x} - \frac{1}{2a_y} - \frac{1}{2a_y}
$$
\n
$$
\frac{\rho_1}{E} = \frac{1}{2a_x} - \frac{1}{2a_y} - \frac{1}{2a_y}
$$
\n
$$
\frac{\rho_1}{E} = \frac{1}{2a_x} - \frac{1}{2a_y} - \frac{1}{2a_y}
$$
\n
$$
\frac{\rho_1}{E} = \frac{1}{2a_x} - \frac{1}{2a_y} - \frac{1}{2a_y}
$$
\n
$$
\frac{\rho_1}{E} = -\frac{1}{2a_x} + \frac{1}{2a_y}
$$

ii. Calculate **E** and **D** in rectangular coordinates at point P(2,−3, 6) produced by a point charge $Q_A = 55$ mC at $A(-2, 3, -6)$.

$$
x + 3 = 0
$$
\n
$$
x = 3
$$
\n
$$
x = 4
$$
\n
$$
x = 6
$$
\n
$$
x = 2
$$
\n
$$
x = 6
$$
\n
$$
x = 2
$$
\n
$$
x = 6
$$
\n
$$
x = 6
$$
\n
$$
x = 2
$$
\n
$$
x = 2
$$
\n
$$
x = 6
$$
\n
$$
x = 2
$$
\n
$$
x = 6
$$
\n
$$
x = 2
$$
\n
$$
x = 6
$$
\n

4.(a) Transform the vector $\mathbf{B} = y \mathbf{a}_x - x \mathbf{a}_y + z \mathbf{a}_z$ into cylindrical coordinates. [05] CO1 L3

$$
\vec{B} = (\vec{y}a_{x}^{2} + \vec{y}a_{y}^{2}) + (\vec{z})a_{z}^{2}
$$
\n
$$
a_{x} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{y} = -x = -\int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \frac{\cos \phi}{-\sin \phi} + \frac{\sin \phi}{\cos \phi} = -\int \cos \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \cos \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \cos \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \cos \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1}{2} \int \sin \phi
$$
\n
$$
a_{z} = \frac{1
$$

(b) i. Give the rectangular coordinates of the point
\n
$$
C(\rho = 4.4, \varphi = -115^{\circ}, z = 2).
$$

\n $C(\rho = 4.4, \varphi = -115^{\circ}, z = 2).$
\n $C(\mu = 1, \mu = 115^{\circ}, z = 1)$
\n $\chi = \int cos \phi$; $y = 1, z = 1$
\n $\chi = -1.859$; $y = 1.859$; $z = 3.984$; $z = 2.984$
\nii. Give the cylindrical coordinates of the point
\n $D(x = -3.1, y = 2.6, z = -3).$
\n $f = \sqrt{x^2 + y^2} = \sqrt{(3 \cdot 1)^2 + (2 \cdot 6)^2} = 4.05$
\n $\phi = \frac{1}{2} \pi \pi^{-1} \left(\frac{3}{2} \pi \right) = \frac{1}{2} \pi \pi^{-1} \left(\frac{2 \cdot 6}{-3 \cdot 1}\right) = -39.98 + 180^{\circ} = 140^{\circ}$
\n $z = -3$

5.(a) Derive the expression for the electric field intensity at a point due to n number of [04] CO1 L2point charges. \rightarrow

Since	1			
. $Qulamb's$	Force. b	There, Q_{1}	Force.	1
\vec{F}	For the line point, q_{1} and q_{2} and q_{3} and q_{4}			
From of the line, q_{1} and q_{2} and q_{3} and q_{4}				
$\vec{F}(r) = \frac{Q_{1}}{Re_{6}} \frac{q_{1}^{2}}{q_{1}^{2}} \cdot \frac{q_{1}^{2}}{q_{1}} + \frac{Q_{2}}{Re_{6}} \frac{q_{1}}{q_{2}^{2} - r_{2}^{2}} \cdot \frac{q_{2}}{q_{2}}$				

$$
\frac{a_{2}x_{3}}{x_{1}x_{1}}
$$
\n
$$
\frac{1}{x_{1}}x_{1}^{2}
$$
\n
$$
\frac{1}{x_{2}}x_{2}^{2}
$$
\n
$$
\frac{1}{x_{3}}x_{3}^{2}
$$
\n
$$
\frac{1}{x_{4}}x_{4}^{2}
$$
\n
$$
\frac{1}{x_{5}}x_{5}^{2}
$$
\n
$$
\frac{1}{x_{6}x_{1}^{2}}x_{5}^{2}
$$
\n
$$
\frac{1}{x_{7}}x_{6}^{2}
$$
\n
$$
\frac{1}{x_{7}}x_{7}^{2}
$$
\n
$$
\frac{1}{x_{7}}x_{8}^{2}
$$
\n
$$
\frac{1}{x_{7}}x_{9}^{2}
$$
\n
$$
\frac{1}{x_{7}}x_{9}^{2}
$$
\n
$$
\frac{1}{x_{7}}x_{9}^{2}
$$

$$
\left[\begin{array}{ccc|c}\n\ddot{f}(x) & \ddots & \ddots & \ddots & \ddots & \ddots \\
\hline\n\ddot{f}(x) & \ddots & \ddots & \ddots & \ddots & \ddots \\
\hline\n\ddot{f}(x) & \ddots & \ddots & \ddots & \ddots & \ddots\n\end{array}\right] \begin{array}{c}\n\ddot{f}(x) & \ddots & \ddots & \ddots \\
\ddot{f}(x) & \ddots & \ddots & \ddots & \ddots\n\end{array}
$$

3nC/m at $x = -2$, $y = 3$. [06] CO1 L3

6. Define surface charge density. Obtain an expression of electric field intensity due [02+08] CO1 L2to an infinite sheet of charge with uniform surface charge distribution ρ_s C/m². Assume the charge is placed over x-y plane.

E
\n
$$
h
$$
 h h

$$
E_{1} = \frac{E_{2}}{4R}
$$
\n
$$
E_{2} = \frac{1}{4R}
$$
\n
$$
E_{3} = \frac{1}{4R}
$$
\n
$$
E_{4} = \frac{1}{4R}
$$
\n
$$
E_{5} = \frac{1}{4R}
$$
\n
$$
E_{6} = \frac{1}{4R}
$$
\n
$$
E_{7} = \frac{1}{4R}
$$
\n
$$
E_{8} = \frac{1}{4R}
$$
\n
$$
E_{1} = \frac{1}{4R}
$$
\n
$$
E_{1} = \frac{1}{4R}
$$
\n
$$
E_{1} = \frac{1}{4R}
$$
\n
$$
E_{2} = \frac{1}{4R}
$$
\n
$$
E_{3} = \frac{1}{4R}
$$
\n
$$
E_{4} = \frac{1}{4R}
$$
\n
$$
E_{5} = \frac{1}{4R}
$$
\n
$$
E_{6} = \frac{1}{4R}
$$
\n
$$
E_{7} = \frac{1}{4R}
$$
\n
$$
E_{8} = \frac{1}{4R}
$$
\n
$$
E_{9} = \frac{1}{4R}
$$
\n
$$
E_{1} = \frac{
$$

$$
=\frac{f_{1}}{2\epsilon_{0}}\int_{0}^{\frac{\pi}{2}}\frac{\tan\theta}{\sec\theta}d\theta dz
$$
\n
$$
=\frac{f_{2}}{2\epsilon_{0}}\int_{0}^{\frac{\pi}{2}}\frac{\sin\theta}{\cos\theta}d\theta dz
$$
\n
$$
=\frac{f_{3}}{2\epsilon_{0}}\int_{0}^{\frac{\pi}{2}}\tan\theta d\theta dz
$$
\n
$$
=\frac{f_{3}}{2\epsilon_{0}}\left[-\cos\theta\right]_{0}^{\frac{\pi}{2}}\hat{d}_{z}=\frac{f_{3}}{2\epsilon_{0}}\hat{d}_{z}
$$
\n
$$
\therefore e.\left[\overline{E}=\frac{f_{1}}{2\epsilon_{0}}\hat{d}_{z}\right]_{0}^{\frac{\pi}{2}}\sqrt{m}
$$
\n
$$
\frac{\sin\theta}{2\theta}d\theta = \frac{1}{2\epsilon_{0}}\frac{\sin\theta}{2\theta}d\theta
$$
\n
$$
\therefore \frac{\pi}{2} \ln \frac{\sin\theta}{2\theta}d\theta = \frac{\pi}{2\epsilon_{0}}\frac{\pi}{2\pi}d\theta
$$
\n
$$
\therefore \frac{\pi}{2} \ln \frac{\sin\theta}{2\theta}d\theta = \frac{\pi}{2\epsilon_{0}}\frac{\pi}{2\pi}d\theta
$$

7. Four 10 nC positive charges are located in z=0 plane at the corners of a square 8 cm. on a side. A fifth 10 nC charge is located at a point 8 cm. distant from other charges. Calculate the magnitude of total force on this fifth charge for $\varepsilon = \varepsilon_0$.

$$
\frac{1}{R_{4}} \text{ from } Q_{14} \text{ is } Q_{5}
$$
\n
$$
\frac{1}{R_{4}} = (4a_{4}^{2} + 4a_{4}^{2} + 4a_{3}^{2} + 4a_{3}^{2}) \text{ cm}
$$
\n
$$
|\overrightarrow{R_{4}}| = 8 \text{ cm}
$$
\n
$$
\frac{1}{R_{4}} =
$$

F = 10 X10 X 10x6 x 9 X10
\n
$$
\frac{9}{(8 \times 10^{-2})^3}
$$
\n
$$
= 40x + 40y + 4\sqrt{203}
$$
\n
$$
= 40x + 40y + 4\sqrt{203}
$$
\n
$$
= 40x + 40y + 4\sqrt{203}
$$
\n
$$
+ 40x + 40y + 4\sqrt{203}
$$
\n
$$
+ 40x + 40y + 4\sqrt{203}
$$
\n
$$
= 100
$$
\n
$$
8x 10
$$
\n
$$
8x 10
$$
\n
$$
= 10 \times \frac{4 \times 4 \times 12}{8^{3}} \times 10^{3} \times 10^{3}
$$

$$
\vec{F} = 0.3977 \times 10^{-3} \text{ a}^3
$$

\n $\vec{F} = 3.977 \times 10^{-4} \text{ a}^3$
\n $\vec{F} = 3.977 \times 10^{-4} \text{ a}^3$
\n $\vec{F} = 1.4 \times 10^{-4} \text{ N}$